Carbonate and chert genesis in the 3.35 Ga old Strelley Pool Formation (Australia): Insights from trace metals and Sm/Nd dating

Sebastian Viehmann¹, Simon V. Hohl², Nathalie Tepe³, Martin Van Kranendonk⁴, Joachim Reitner⁵, Thilo Hofmann³, Christian Koeberl⁶, and Patrick Meister¹

¹Universität Wien, Dept. of Geodynamics and Sedimentology, Vienna, Austria (sebastian.viehmann@univie.ac.at)
²Tongji University Shanghai, State Key Laboratory of Marine Geology, Shanghai, P.R. China
³Universität Wien, Dept. of Environmental Geosciences, Vienna, Austria
⁴University of New South Wales, Australian Centre for Astrobiology, Kensington, Australia
⁵Georg-August-Universität Göttingen, Dept. of Geobiology, Göttingen Germany
⁶Universität Wien, Dept. of Lithospheric Research, Vienna, Austria

Stromatolites are laminated, presumably microbial structures, consisting largely of an authigenic precipitate, thus, providing potential geochemical archives of early Earth aqueous environments and their habitability. In this study, we report trace element and Sm/Nd isotope data from Palaeoarchean stromatolites and adjacent cherts of the Strelley Pool Formation (NW Australia), obtained by ICP-MS and TIMS, to test their reliability as archives for palaeo-environmental reconstruction and to understand authigenic mineral formation.

Stromatolitic carbonates plot together with the stratigraphically underlying Marble Bar cherts on a linear Sm-Nd regression line yielding an age of 3253 ±320 Ma.. In contrast, associated crystal-fan carbonates yield 2718 ±220 Ma, suggesting that their Sm-Nd isotope system was altered after deposition. Geochronological information via Sm-Nd dating of black and white cherts is limited, probably due to a reset of the isotope system during an unknown Paleoproterozoic or younger alteration event.

Carbonates, as well as white cherts, show shale-normalized rare earth element and yttrium patterns (REY$_{SN}$; except for redox-sensitive Ce and Eu) parallel to those of modern seawater, indicating a seawater-derived origin. Positive Eu$_{SN}$ anomalies (2.1 - 2.4), combined with heterogeneous εNd$_{3.35Ga}$ values (-3.2 to +5.8) within alternating stromatolite laminae, support that seawater chemistry was variably affected by both continental weathering and high-temperature hydrothermal fluids contributing elements of both young mafic or older felsic rocks. In contrast, black cherts show non-seawater like REY$_{SN}$ patterns and significant amounts of elements leached from the surrounding rocks, masking the pristine geochemical composition of ancient seawater. In conclusion, Archaean stromatolites indeed preserve pristine authigenic phases at the mm-scale that contain signatures representative of the water chemistry prevailing in the depositional environment.