Fictitious Domain methods for simulating thermo-hydro-mechanical processes in fractures

Cyrill von Planta1, Maria G.C. Nestola1, Daniel Vogler2, Patrick Zulian1, Nasibeh Hassanjankoshkroud4, Xiaoqing Chen2, Martin O. Saar2,3, and Rolf Krause1

1Università della Svizzera Italiana, Switzerland, Institute of Computational Science, Switzerland (cyrill.planta@gmail.com)
2ETH Zurich, Switzerland, Geothermal Energy and Geofluids Group, Institute of Geophysics, Department of Earth Sciences
3University of Minnesota, USA, Department of Earth and Environmental Sciences
4FAU Erlangen, Germany, Institute of System Simulation

Fictitious domain methods provide an promising way for simulating fluid structure interaction in fractures with complex geometries. The main characteristic of the method is that the solid and the fluid problem are simulated on different, non-matching meshes, with the solid being immersed into the fluid. The problems are coupled by L^2 - projections, which transfer physical variables between the two computational domains and either the penalty, augmented Lagrangian or Lagrange multiplier method to represent the solid in the fluid. We show the evolution of our framework in the last three years, starting with benchmark problems such as Poiseuille flow, with successive extension to contact, fracture intersections and thermal coupling.