EGU General Assembly 2020
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Partitioning of chalcophile and siderophile elements during partial melting of serpentinized peridotite in subduction settings

Margarita Merkulova, Antoine Triantafyllou, and Bernard Charlier
Margarita Merkulova et al.
  • Department of Geology, University of Liege, B-4000 Liege, Belgium (

Enrichment of subduction derived magmas in chalcophile and siderophile elements plays a key role in the formation of economically important ore deposits. Melting of mantle wedge peridotite induced by fluxing slab-derived fluids is the first step in the chemical transfer from the slab to melts (Spandler and Pirard, 2013). Changes in redox conditions, sulfur content, amount of fluid, and P-T conditions affect the elements partitioning between melts and residual phases (Dale et al., 2009; Li and Audetat, 2012; Perchuk et al., 2018; Rielli et al., 2018). However, to date there is a few systematic data on mineral-melt partitioning for economically important elements during partial melting of peridotite in mantle wedge conditions.

We determined experimentally mineral-melt partition coefficients for a range of chalcophile and siderophile elements (V, Co, Cu, Zn, As, Se, Mo, Ru, Rh, Pd, Ag, Cd, Sb, Re, Os, Ir, Pt, Au, Tl, Bi) at different P-T conditions. Slightly serpentinized peridotite (3 wt.% H2O; Debret et al., 2013) was used as a starting material for all experiments. A set of experiments with 1 wt.% of FeS added to the peridotite was also performed in order to study the effect of S on element partitioning. Starting materials were doped with 100-200 ppm of targeted elements. The experiments were performed at pressures of 1-2 GPa and at temperatures between 1100 and 1300°C in end-loaded 0.5” piston-cylinder apparatus in the newly established high-pressure laboratory at the University of Liege (Belgium). In order to avoid Fe-loss, chemical reduction and volatile loss of experimental charges, double Au80Pd20 capsules pre-saturated with Fe were used. Major and trace element composition in synthesized experimental products were measured by electron microprobe and LA-ICP-MS respectively.

In this study, we report a wide range of partition coefficients determined between coexisting silicate, oxide, sulfide minerals and melt as a function of P-T and S content. The results provide further insights into mobility of economically important elements during genesis of ore-forming magmas in subduction settings.


How to cite: Merkulova, M., Triantafyllou, A., and Charlier, B.: Partitioning of chalcophile and siderophile elements during partial melting of serpentinized peridotite in subduction settings, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-6946,, 2020.