Assessing the relationship between the TGF durations and the onset times of the TGFs and the main optical pulses as detected by ASIM

Chris Alexander Skeie¹, Nikolai Østgaard¹, Ingrid Bjørge-Engeland¹, Andrey Mezentsev¹, Torsten Neubert², Victor Reglero³, Martino Marisaldi¹, Pavlo Kochkin¹, Nikolai Lehtinen¹, David Sarria¹, Carolina Maiorana¹, Anders Lindanger¹, Kjetil Ullaland¹, Georgi Genov¹, Matthias Heumesser², Freddy Christiansen², and Olivier Chanrion²

¹University of Bergen, Institute of Physics and Technology, The Birkeland Centre for Space Science, Bergen, Norway (casskeie@hotmail.com)
²National Space Institute, Technical University of Denmark, Denmark
³University of Valencia, Spain

Using the Modular X- and Gamma-ray Sensor (MXGS) and the Modular Multi-spectral Imaging Array (MMIA) of the Atmosphere-Space Interactions Monitor (ASIM), we investigate the time sequence of the Terrestrial gamma-ray flashes and the optical emissions from the associated lighting. A common observation in the ASIM data is that the TGFs are observed before or during a weak increase in the optical signals in 337 nm and 777.4 nm, and prior to- or at the onset of the main optical pulse. Using data from the MXGS and MMIA instruments for the period from April 2019, we assess the time sequence and the relationship between the observed TGF duration and the time between the onset of the TGF and the onset of the main optical pulse, with a relative timeing uncertainty of +/- 5 µs. The data prior to April 2019 is presented in Bjørge-Engeland et al.