Multiple drivers of seasonal and interannual variation in P_{max}: Implications for leaf photosynthesis of Artemisia ordosica

Yun Tian1,2, Tianshan Zha1,2, and Xin Jia1,2

1School of Soil and Water Conservation, Beijing Forestry University, Beijing, China (tianyun@bjfu.edu.cn)
2Yanchi Research Station, School of Soil and Water conservation, Beijing Forestry University, Beijing, China (tianyun@bjfu.edu.cn)

Revealing the seasonal and interannual variations in leaf-level photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and shrub ecosystem. *Artemisia ordosica* is a dominant shrub species in semi-arid area of northwest China. Photosynthetic gas exchange, leaf nitrogen content (LN), specific leaf area (SLA) and some environmental factors were measured simultaneously on clear days (rotated every 10 days) of the growing season from 2011 to 2018, to quantify the temporal variations and environmental controls of photosynthetic parameters. Our results demonstrated that mean value of light-response curve parameters, the maximum photosynthetic capacity (P_{max}), appear quality efficiency (AQE), respiration in dark (R_d), light saturated point (LSP) and light compensated point (LCP) had a gradual decline with the growth (spring> summer>autumn). Structural equation modeling (SEM) was used to elucidate the direct and indirect effects of biophysical factors on P_{max}. The driven factors of P_{max} in growing season changed, but stomatal conductance (g_s) was the dominant factor in all stages. The g_s was influenced by SLA and LN and the soil water content at a depth of 10cm (SWC$_{10}$) affected the P_{max} in spring. In summer, P_{max} was significantly positively related with g_s and transpiration rate (T_r), and g_s was influenced by SLA, LN and soil water content at a depth of 30cm (SWC$_{30}$). In autumn, P_{max} was significantly positively correlated with g_s, while was significantly negatively correlated with air temperature (T_a). This simulation based on situ ecophysiological research suggest that P_{max} of *A. ordosica* responded to the environment factors of seasonal and interannual variations, which is not the inherent genetic characteristics. Soil water content is the major environmental factor influencing P_{max} in spring and summer, while T_a is the major one in autumn. Knowledge of how environmental change will affect the photosynthesis of *A. ordosica* in the future is essential for their protection, adaptation strategies and carbon fixation prediction in shrub ecosystems.