EGU2020-7273
https://doi.org/10.5194/egusphere-egu2020-7273
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Fracture reactivation for permeability enhancement in geothermal systems

Alexandra Kushnir, Michael Heap, Patrick Baud, and Thierry Reuschlé
Alexandra Kushnir et al.
  • Institute de Physique du Globe de Strasbourg UMR 7516, Université de Strasbourg / CNRS, Strasbourg, France

While the deep granitic basement in the Upper Rhine Graben is currently being exploited as a geothermal reservoir at numerous geothermal sites, the Permo-Triassic sandstones that lie directly above the granite are critical to continued regional hydrothermal convection. Here we investigate the propensity for variably sealed fractures to be reactivated during deformation and the role this fracture reactivation plays on permeability enhancement in geothermal reservoirs. We source un-fractured, bedded sandstones and the same bedded sandstones containing a single, variably-sealed fracture from a 400 m-thick unit of Permo-Triassic sandstone sampled from the EPS-1 exploration well near Soultz-sous-Forêts (France) in the Upper Rhine Graben.

31 cylindrical samples (20 mm in diameter and 40 mm long) were cored such that their dominant structural feature (i.e. bedding or natural fracture) was oriented parallel, perpendicular, or at 30° to the sample axis. The initial permeability of the un-fractured samples ranged between 2.5×10-17 and 5.6×10-16 m2 and between 3.6×10-16 and 3.3×10-14 m2 for naturally fractured samples. In un-fractured samples, permeability decreases as a function of increased bedding angle; fracture orientation, however, does not appear to have a discernable influence on permeability. Samples were water-saturated and deformed until failure under pressure conditions appropriate to the Soultz-sous-Forêts geothermal system - Peff of 14.5 MPa - and at a strain rate of 10-6 s-1. All samples developed through-going shear fractures, however, only in samples containing partially sealed fractures did the experimentally produced fractures take advantage of the pre-existing features. In samples containing a fully-sealed fracture, the experimentally induced fracture developed in a previously undeformed part of the sandstone matrix. Further, post-deformation permeability measurements indicate that while sample permeability increased by up to one order of magnitude for a given sample, this increase is generally independent of feature orientation.

Therefore, formations containing sealed fractures may not necessarily be weaker and, as a consequence, may not be more apt to significant permeability increases during stimulation than un-fractured formations. These data can contribute to the development and optimization of stimulation techniques used in the Upper Rhine Graben.

How to cite: Kushnir, A., Heap, M., Baud, P., and Reuschlé, T.: Fracture reactivation for permeability enhancement in geothermal systems, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-7273, https://doi.org/10.5194/egusphere-egu2020-7273, 2020.

Displays

Display file