Effect of whistler precursor waves on energy dissipation in supercritical quasi-perpendicular collisionless shocks.

Ahmad Lalti1,2, Yuri Khotyaintsev1, Daniel Graham1, Andris Vaivads3, Andreas Johlander4, Roy Torbert5, Barbara Giles6, Chris Russell7, and Jim Burch8

1Swedish Institute of Space Physics, Uppsala, Sweden
2Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
3Space and Plasma Physics, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
4Department of Physics, University of Helsinki, Helsinki, Finland
5University of New Hampshire, Durham, USA
6NASA Goddard Space Flight Center, Greenbelt, USA
7University of California, Los Angeles, USA
8Southwest Research Institute, San Antonio, USA

The process of transforming the bulk kinetic energy of solar wind into the random motion of the plasma particles is still an open question. One of the proposed mechanisms for energy dissipation in such shocks is wave-particle interactions. Specifically reflected ions at the foot of the shock could interact with the solar wind plasma in an unstable way causing an increase in the temperature of the upstream plasma. Phase standing Whistler precursor waves upstream of the shock front could play a major role in enhancing energy dissipation. We analyze multiple shock crossing events encountered by the Magnetospheric Multiscale (MMS) multi-spacecraft Mission, with Alfvénic Mach numbers around 4 and a θ_{Bn} around 80 degrees. We use these events to study the effect of such waves on energy dissipation at quasi perpendicular shocks. Using spectral analysis and by calculating the poynting flux of the waves, we investigate the upstream shock energy transport by whistler waves, then we discuss the consequences of these results on the wave particle interaction as a mechanism for stabilizing such high Mach number shocks.