The transition of the East European cratonic lithosphere to that of the Palaeozoic collage of the Trans-European Suture Zone as depicted on the TTZ-South deep seismic profile (SE Poland to NW Ukraine)

Tomasz Janik¹, Vitaly Starostenko², Paweł Aleksandrowski³, Tamara Yegorova², Wojciech Czuba¹, Piotr Środa¹, Anna Murovskaya², Khrystyna Zajats⁴, Andrzej Głąszyński⁵, Katerina Kolomiyets², Dmytro Lysynchuk², Dariusz Wójcik¹, Victor Omelchenko², Olga Legostaieva⁷, James Mechie⁶, Anatoly Tolkunov⁷, Tatiana Amashukeli², Dmytro Gryntº, and Serhii Chulkov²

¹Institute of Geophysics, Polish Academy of Sciences, Ks. Janusza 64, PL-01-452 Warszawa, Poland
²Institute of Geophysics, National Academy of Sciences of Ukraine, Palladin Av. 32, 03680 Kiev, Ukraine
³Polish Geological Institute-National Research Institute, Lower Silesia Branch, Jaworowa 19, 53-122 Wrocław, Poland
⁴Zakhidnadra Servis, Sichovykh Striltsiv 12/9, Lviv, Ukraine
⁵Polish Geological Institute-National Research Institute, Rakowiecka 4, PL-00-975 Warszawa, Poland
⁶Deutsches GeoForschungsZentrum – GFZ, Section “Geophysical Deep Sounding”, Telegrafenberg 14473, Potsdam, Germany
⁷State Geophysical Enterprise “Ukrgeofizika”, Sofii Perovskoy 10, 03057, Kiev, Ukraine

Crustal and uppermost mantle structure along the Teisseyre-Tornquist Zone (TTZ) was explored along the ~550 km long, NW-SE-trending TTZ-South profile, using seismic wide-angle reflection/refraction (WARR) method. The profile line was intended to follow the border between the East European Craton (EEC) and the so called Palaeozoic Platform (PP) of north-central Europe, believed to contain a number of crustal blocks that were accreted to the craton during pre-late Carboniferous times, defining the Trans-European Suture Zone (TESZ).

The seismic velocity model of the TTZ-South profile shows lateral variations in crustal structure. Its Ukrainian segment crosses the interior of the Sarmatian segment of the EEC, where the crystalline basement gradually dips from ~2 km depth in the SE to ~12 km at the Ukrainian-Polish border. This part of the model shows a four-layered crustal structure, with an up to 15 km-thick sedimentary cover, an underlying crystalline upper crust, a 10-15 km-thick middle crust and a ~15 km thick lower crust. In Poland, the profile passes along the TESZ/EEC transition zone of complex crustal structure. The crystalline basement, whose top occurs at depths of 10-17 km, separates the sedimentary cover from the ~10 km thick mid-crustal layer (Vp=6.5-6.6 km/s), which, in turn, overlies a block of 10-15 km thickness with upper crustal velocities (Vp=6.2 km/s). The latter is underlain by a ~10-15 km-thick lower crust. Along most of the model one can see conspicuous velocity inversion zones occurring at various depths. At intersections of the TTZ-South profile with some previous deep seismic profiles (e.g. CEL02, CEL05, CEL14, PANCAKE) such inversions document complex wedging relationships between the EEC and PP crustal units. These may have
resulted from tectonic compression and thick-skinned thrusting due to either Neoproterozoic EEC collision with accreting terranes or intense Variscan orogenic events. Five high velocity bodies (HVB; $V_p = 6.85\text{-}7.2 \text{ km/s}$) were detected in the middle and lower crust at 15-37 km depth. The Moho depth varies substantially along the profile. It is at ~ 42 km depth in the NW and deepens SEward to ~ 50 km at ~ 685 km. Subsequently, it rises abruptly to ~ 43 km at the border of the Sarmatian segment of the EEC and sinks again to ~ 50 km beneath the Lviv Paleozoic trough at ~ 785 km. From this point until the SE end of the profile, the Moho gently shallows, up to a depth of ~ 37 km, including a step-like jump of 2 km at ~ 875 km. Such abrupt Moho steps may be related to crust-scale strike-slip faults. Along the whole profile, sub-Moho velocities are $\sim 8.05\text{-}8.1 \text{ km/s}$, and at depths of 57-63 km V_p values reach 8.2-8.25 km/s. Four reflectors/refractors were modelled in the upper mantle at $\sim 57\text{-}65$ km and ~ 80 km depths.