Crustal structures of the Anatolian Plate from receiver function analysis

Zhipeng Zhou1,2, Hans Thybo1,2, Timothy Kusky1,3,4, and Chi-Chia Tang5

1School of Earth Sciences, China University of Geosciences, Wuhan, China
2Eurasia Institute of Earth Science, Istanbul Technical University, Istanbul, Turkey
3Three Gorges Research Center for Geo-hazards, China University of Geosciences, Wuhan, China
4State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China
5Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, China

The crustal structure of the Anatolian plateau in Turkey is investigated using receiver functions obtained from the teleseismic recordings of the Kandilli Observatory array (KOERI; KO) and the available IRIS data (e.g., Eastern Turkey Seismic Experiment (ETSE), Northern Anatolian Fault experiment (YL), Continental Dynamics–Central Anatolian Tectonics (CD-CAT) project). The following steps are included for studying the crustal structures in Anatolia Plate: 1) high-resolution crustal structures inferred from Receiver Function (RF) inversion algorithm using multiple-taper correlation (MTC) estimates, we try to distinguish interfaces including Moho, bottom of partial melting and other interfaces by the Ps phase; 2) we calculate RFs by Time Domain Interactive Deconvolution and transform the time domain RFs into the H-Vp/Vs (H-k) domain to find the best fit Moho and Vp/Vs, we classify the quality of the H-k stacking results and record all the possible H-k couples; 3) we determine the H-k values for the stations with low quality by comparing the RF H-k stacking results with nearby stations with good quality. With the dense stations, we present high-quality Moho variations and crustal structures in the Anatolia Plate.