Simulating melting of fault gouge at the local scale

Guilhem Mollon, Jerôme Aubry, and Alexandre Schubnel

1Université de Lyon, INSA Lyon, CNRS UMR5259, LaMCoS, Bâtiment Sophie Germain, 27bis Avenue Jean Capelle, F-69621 Villeurbanne, France (guilhem.mollon@insa-lyon.fr)
2Laboratoire de Géologie, École Normale Supérieure/CNRS UMR 8538, PSL Research University, 24 rue Lhomond, F-75005 Paris, France

Melting of fault gouge during fast co-seismic slip has been widely documented in laboratory studies. Because the real-time observation and local probing of this phenomenon is experimentally out of reach at the present time, the implication of melting on fault weakening are not yet fully understood. Physics-based numerical modelling of a synthetic sliding interface could thus be a way to bring a better understanding of this physico-mechanical process.

In this study, we present a numerical work paving the way towards such an understanding. It is implemented in MELODY, a numerical tool combining Discrete Element Method (DEM) and a Multibody Meshfree Approach (i.e. highly deformable DEM). In this model, a small patch of seismic fault filled with granular gouge (composed of perfectly rigid and incompressible grains with realistic angular shapes) is simulated. By shearing this simulated fault, we produce highly deformable gouge particles within a melted layer.

Numerical results show that melting processes have strong consequences on the fault rheology, by reducing shear stress and favouring the localization of the deformation on the sliding interface. Results are compared with experimental observations on saw-cut faults deformed in triaxial conditions in the laboratory. Future developments including thermal diffusion within the gouge and in the surrounding medium are described.