Using plant trait data to extend a theory of global ecosystem function

Yunke Peng1,2, Keith Bloomfield2, Lucas Cernusak3, Thomas Domingues4, Jon Lloyd5, and Iain Colin Prentice2,6,7

1Masters Programme in Ecosystems and Environmental Change, Imperial College London, Department of Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
2AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
3Centre for Tropical Environmental Sustainability Studies, James Cook University, Cairns, QLD, 4878, Australia
4FFCLRJP, Department of Biology, University of São Paulo, Ribeirão Preto, Brazil
5Department of Life Sciences, Imperial College London, Kensington, London, SW7 2AZ UK
6Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
7Department of Earth System Science, Tsinghua University, Beijing 100084, China

There remains large uncertainty about the global exchanges of carbon between the atmosphere and the terrestrial biosphere under different environmental change scenarios. Ecosystem and Earth system models rely on photosynthetic capacity (maximum rates of carboxylation (V_{cmax}) and electron transport (J_{max})) to simulate carbon assimilation. Photosynthetic capacity has been related to environmental and climatic constraints, but also to leaf and soil nutrients. Views differ on which are more important.

We assembled and analysed a large dataset of global observations of photosynthetic and other leaf traits. Photosynthetic capacity was best predicted based on optimality hypotheses. V_{cmax} standardized to 25°C (V_{cmax25}) was proportional to light availability, and increased towards colder and drier environments – as expected due to the greater biochemical investment required at lower temperatures, or when stomata are more closed. The ratio J_{max25}/V_{cmax25} declined with growth temperature (also predicted). However, theoretical predictions slightly underestimated V_{cmax} at high growth temperatures, and overestimated it at low growth temperatures. This bias might be due to the difference between leaf and air temperatures.

Statistical models for photosynthetic capacity (all species, and site means) overestimated V_{cmax} in low-P leaves. Analysis of a subset of the data showed that leaf P tends to increase with measured soil P. A relationship of model bias to leaf N appears in the all-species analysis – perhaps reflecting a correlation of V_{cmax}, leaf N and light levels within communities. But site-mean analysis showed no such bias, and leaf N showed no relationship to the soil C:N ratio. These results support a previously noted dependency of V_{cmax} on P availability; but not the control of V_{cmax} by N availability that has been assumed in many models.