A new comparative scale between tropopause height and beryllium 7 and the weight of quasi-biennial oscillation (QBO) effect.

Lucrezia Terzi¹,², Gerhard Wotawa³, Paul W. Staten⁴, Lan Luan⁶, Axel Gabriel⁵, and Martin Kalinowski⁶

¹SCKCEN, Belgian Nuclear Research Centre, Mol, Belgium (lucrezia.terzi@sckcen.be)
²Technische Universität Wien, Atominstitut, Austria
³Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Vienna, Austria
⁴Department of Earth and Atmospheric Sciences, Indiana University Bloomington, Indiana, United States
⁵IAP Leibniz-Institut für Atmosphärenphysik e.V. an der Universität Rostock, Kühlungsborn, Germany
⁶CTBTO, Preparatory Commission for the Nuclear-Test-Ban Treaty Organization, Vienna, Austria

Recent studies demonstrated how accurate beryllium 7 can be used as proxy to predict seasonal weather, in particular Indian monsoons, climate change patterns such as tropopause height changes, tropopause breathing and Jet Stream stalling.

Beryllium 7 studies also prove that climate change phenomena are not driven by solar flux or earth magnetic field but are only partially influenced by them.

In this work we will compare recent tropopause height data with Beryllium 7 in order to build a comparative scale between the 2 parameters, including a focus on QBO (quasi-biennual oscillation) to quantify the effect of QBO on the analysed beryllium 7 data.