Wind waves modeling in the polar law weather conditions

Alexandra Kuznetsova, Evgeny Poplavsky, Nikita Rusakov, and Yuliya Troitskaya
Institute of Applied Physics of RAS, Nonlinear geophysical processes department, Nizhny Novgorod, Russian Federation
(alexandra@hydro.appl.sci-nnov.ru)

Arctic storms pose a great danger to developing commercial and passenger shipping, coastal infrastructure, and also for oil production from offshore platforms. This is primarily due to high waves and extreme winds. Such episodes of adverse weather conditions due to their rapid development are poorly predicted by modern models. For this purpose, the representation of the event of polar law is studied in the wave model WAVEWATCH III.

Wind waves were simulated under conditions of polar depression on ice-free water. To simulate wind waves under conditions of polar depression, the Barents Sea was selected, where, according to the data of [1, 2], a large number of polar hurricanes are observed. Among the identified polar hurricanes, for example, in [3], a hurricane that took place on 05.02.2009, observed at coordinates 69 N 40 E is chosen. The preliminary results in the wave model are obtained without the ice influence consideration. The developed model was configured using the CFSR wind reanalysis data. The resulting distribution of significant wave heights is obtained. Then, to consider the attenuation by sea ice, the reanalysis data of the Arctic System Reanalysis Version 2 (ASRv2), which is based on Polar WRF with a resolution of 15 km for the Arctic region, is used. Modeling the destruction of ice by waves during an intense arctic storm will be implemented using WW3 models with an IS2 module.

The work is supported by RFBR grant 18-05-60299.