EGU2020-8361, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-8361
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Drawing the landslide susceptibility maps based on long term evolution of extreme rainfall-induced landslide

Chunhung Wu
Chunhung Wu
  • Feng Chia University, Department of Water Resources and Conservation Engineering, Taichung, Taiwan (chhuwu@fcu.edu.tw)

This research is concerned with the prediction accuracy and applicability of statistical landslide susceptibility model to the areas with dense landslide distribution caused by extreme rainfall events and how to draw the annual landslide susceptibility maps after the extreme rainfall events. The landslide induced by 2009 Typhoon Morakot, i.e. an extreme rainfall event, in the Chishan river watershed is dense distributed. We compare the annual landslide inventories in the following 5 years after 2009 Typhoon Morakot and finds the similarity of landslide distribution.

The landslide distributions from 2008 to 2014 are concentrated in the midstream and upstream watersheds. The landslide counts and area in 2009 are 3.4 times and 7.4 times larger than those in 2008 due to 2009 Typhoon Morakot. The landslide counts and area in 2014 are only 69.8% and 53.4 % of those in 2009. The landslide area from 2010 to 2014 shows that the landslide area in the following years after 2009 Typhoon Morakot gradually decreases if without any heavy rainfall event with more accumulated rainfall than that during 2009 Typhoon Morakot.

The landslide ratio in the upstream watershed in 2008 is 1.37%, and that from 2009 to 2014 are over 3.51%. The landslide ratio in the upstream watershed in 2014 is 1.17 times larger than that in 2009. On average, the landslide inventory from 2010 to 2014 in the upstream watershed is composed of 60.1 % old landslide originated from 2009 Typhoon Morakot and 39.9 % new landslide.

The landslide ratio in the midstream watershed reaches peak (9.19%) in 2009 and decreases gradually to 2.56 % in 2014. The landslide ratio in 2014 in the midstream watershed is only 27.9% of that in 2009, and that means around 72.1 % of landslide area in 2009 in the midstream watershed has recovered. On average, the landslide inventory from 2010 to 2014 in the midstream watershed is composed of 76.1 % old landslide originated from 2009 Typhoon Morakot and 23.9 % new landslide.

The research uses the landslide area in 2009 and 2014 in the same subareas to calculate the expanding or contracting ratio of landslide area. The contracting ratio of riverbank and non-riverbank landslide area in the midstream watershed are 0.760 and 0.788, while that in the downstream watershed are 0.732 and 0.789. The expanding ratio of riverbank and non-riverbank landslide area in the upstream watershed are 1.04 and 1.02.

The annual landslide susceptibility in each subarea in the Chishan river watershed in a specific year from 2010 to 2014 is the production of landslide susceptibility in 2009 and the contraction or expanding ratio to the Nth power, and the N number is how many years between 2009 and the specific year. We adopt the above-mentioned equation and the landslide susceptibility model based on the landslide inventory after 2009 Typhoon Morakot to draw the annual landslide susceptibility maps in 2010 to 2014. The mean correct ratio value of landslide susceptibility model in 2009 is 70.9%, and that from 2010 to 2014 are 62.5% to 73.8%.

How to cite: Wu, C.: Drawing the landslide susceptibility maps based on long term evolution of extreme rainfall-induced landslide , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8361, https://doi.org/10.5194/egusphere-egu2020-8361, 2020