Evolution of brittle structures in plagioclase-rich rocks at high-grade metamorphic conditions – Linking laboratory results to field observations

Sarah Incel1,2,3, Jörg Renner2, and Bjørn Jamtveit1
1Physics of Geological Processes, The Njord Centre, Department of Geosciences, University of Oslo, Norway
2Ruhr University Bochum, Germany
3Department of Geodynamics and Sedimentology, University of Vienna, Austria

Plagioclase-rich lower crustal granulites exposed on the Lofoten archipelago, N Norway, display pseudotachylytes, reflecting brittle deformation, as well as ductile shear zones, highlighting plastic deformation. Pristine pseudotachylytes often show no or very little difference in mineral assemblage to their host-rocks that exhibit limited, if any, metamorphic alteration. In contrast, host-rock volumes that developed ductile shear zones exhibit significant hydration towards amphibolite or eclogite-facies assemblages within and near the shear zones. We combine experimental laboratory results and observations from the field to characterize the structural evolution of brittle faults in plagioclase-rich rocks at lower crustal conditions. We performed a series of deformation experiments on intact granulite samples at 2.5 GPa confining pressure, a strain rate of 5×10^{-5} s$^{-1}$, temperatures of 700 and 900 °C, and total strains of either ~7-8 % or ~33-36 %. Samples were either deformed ‘as-is’, i.e. natural samples without any treatment, or with ~2.5 wt.% H$_2$O added. Striking similarities between the experimental and natural microstructures suggest that the transformation of precursory brittle structures into ductile shear zones at eclogite-facies conditions is most effective when hydrous fluids are available in excess.