Modelling coronal mass ejection flux ropes signatures using Approximate Bayesian Computation: applications to Parker Solar Probe

Andreas Weiss1,2, Christian Möstl1, Teresa Nieves-Chinchilla3, Tanja Amerstorfer1, Erika Palmerio4, Martin Reiss4, Rachel Bailey1,5, Jürgen Hinterreiter1,2, Ute Amerstorfer1, and Maike Bauer1,2

1Space Research Institute, Austrian Academy of Sciences, Graz, Austria
2Institute of Physics, University of Graz, Graz, Austria
3Heliospheric Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
4Department of Physics, University of Helsinki, Helsinki, Finland
5Zentralanstalt für Meteorologie und Geodynamik, Vienna, Austria

We present an updated three-dimensional coronal rope ejection (3DCORE) model and an associated pipeline that is capable of producing extremely large ensembles of synthetic in-situ magnetic field measurements from simulated coronal mass ejection flux ropes. The model assumes an empirically motivated torus-like flux rope structure that expands self-similarly and contains an embedded analytical magnetic field. Using an Approximate Bayesian computation (ABC) algorithm we validate the model by showing that it is capable of qualitatively reproducing measured flux rope signatures. The ABC algorithm also gives us uncertainty estimates in the form of probability distributions for all model parameters. We show the first results for applying our model and algorithms to coronal mass ejections observed in situ by Parker Solar Probe, specifically the event on 2018 November 12 at 0.26AU, where we attempt to reproduce the measured magnetic field signatures and furthermore reconstruct the global flux rope geometry.