Intensified hydrological cycle during the Early Eocene Climatic Optimum (EECO) recorded in the Xining Basin, NE Tibet

Niels Meijer\(^1\), Guillaume Dupont-Nivet\(^{1,2,3}\), Alexis Licht\(^4\), Pierrick Roperch\(^2\), Alexander Rohrmann\(^5\), Amber Woutersen\(^6\), Carina Hoorn\(^6\), Natasha Barbolini\(^7\), Aijun Sun\(^8\), Hemmo Abels\(^9\), Hanno Meyer\(^\text{10}\), and Norbert Nowaczyk\(^11\)

\(^1\)Universität Potsdam, Institute of Geosciences, Potsdam-Golm, Germany (meijer@uni-potsdam.de)
\(^2\)Univ Rennes, CNRS, Géosciences Rennes - UMR CNRS 6118, F-35000 Rennes, France
\(^3\)Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Beijing, China
\(^4\)Department of Earth and Space Sciences, University of Washington, Seattle, USA
\(^5\)Tektonik und Sedimentäre Systeme, Freie Universität Berlin, Berlin, Germany
\(^6\)Department of Ecosystem and Landscape Dynamics (ELD), Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
\(^7\)Department of Ecology, Environment, and Plant Sciences & Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
\(^8\)Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008 China
\(^9\)Department of Geosciences and Engineering, Delft University of Technology, Delft, the Netherlands
\(^10\)Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany
\(^11\)GFZ German Research Centre for Geosciences, Potsdam, Germany

The evolution of Asian climate during the Cenozoic is traditionally linked to shifts in paleogeography such as the proto-Paratethys Sea incursions and uplift of the Tibetan Plateau driving monsoonal circulation and affecting the mid-latitude westerlies in Central Asia. In contrast, the role of global climate in the Asian hydrological cycle remains unclear. Here, we present a new stratigraphic record from the terrestrial Xining Basin in central China, which covers the Early Eocene Climatic Optimum (EECO), a period characterized by long-term global warmth and elevated atmospheric CO\(_2\) levels. The record is dated using magnetostratigraphy and extends the previously studied Paleogene strata down to 50.9 Ma (chron C23n). We use a variety of paleoclimate proxies, to derive the hydroclimatic evolution of the basin at this time. The lithostratigraphy is characterized by organic-rich mudrocks and gypsum beds (reaching TOC contents of up to 1.7\%) interpreted as an alluvial mudflat to saline lake. The higher organic content of the strata indicates either increased organic productivity or preservation, both of which suggest a wetter depositional environment during the EECO. This is corroborated by palynological records showing a large increase in the abundance and diversity of trilete spores, indicating a wetter biome at this time. In addition, the d\(^{13}\)C values of the bulk organic matter and leaf waxes (both C\(_{29}\) and C\(_{31}\)), suggest a reduction in water stress on plants and a wetter environment as well. These observations are in stark contrast to the arid red beds, evaporites and xerophytic pollen observed in the underlying Cretaceous-Paleocene strata and overlying middle-late Eocene deposits. The
peak global warmth of the EECO is thus clearly linked to an intensified Asian hydrological cycle suggesting a major driving role for global climate.