EGU2020-8639
https://doi.org/10.5194/egusphere-egu2020-8639
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Synchrotron radiation and long path cryogenic cells: New tools and results for modelling chlorinated compounds absorption in the 8-12µm atmospheric window

Laurent Manceron
Laurent Manceron
  • Synchrotron SOLEIL, AILES, Gif-sur-Yvette Cedex, France (laurent.manceron@synchrotron-soleil.fr)

 

Anusanth Anantharajaha, Fridolin Kwabia Tchanaa, Jean-Marie Flauda , Pascale Royb and Laurent Manceronb,c

  • a- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583,
    Université de Paris et Université Paris-Est Créteil, Institut Pierre Simon Laplace,
    61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France.
  • b- Synchrotron SOLEIL, AILES Beamline, L’Orme des Merisiers, Saint-Aubin F-91192, France.
  • c-  Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 place Jussieu, F-75005 Paris, France. 

 

Nitryl chloride (ClNO2) and Chlorine Nitrate are molecules of great interest for atmospheric chemistry since these are produced by heterogeneous reactions, in the marine troposphere, between NaCl sea-salt aerosols or ClO and gaseous N2O5 [1,2], and on polar stratospheric clouds, between N2O5 and solid HCl [3,4].

 

Many high-resolution spectroscopic studies in the microwave and mid-infrared regions are available. However, these molecules present low-lying vibrational levels and thus numerous hot bands in the regions of the NOx stretching and bending mode absorptions in the 8-12 µm atmospheric transparency window which could serve for remote sensing and quantification of these species.

Fourier Transform Spectrometry is a useful technique to observe broad band high resolution spectra (0.001 cm-1) of these molecules and a significant advantage is gained by combining interferometry with the high brightness of a synchrotron source [5]. At SOLEIL we have developed specific instrumentation to study such reactive molecules and a few results concerning chlorine-containing compounds will be presented.

  1. B. J. Finlayson-Pitts, M. J. Ezell, and J. N. Pitts Jr, Nature 337, 241-244 (1989).
  2. W. Behnke, V. Scheer, and C. Zetzsch, J. Aerosol Sci. 24, 115-116 (1993).
  3. . M. A. Tolbert, M. J. Rossi, and D. M. Golden, Science 240, 1018-1021 (1988).
  4. M. T. Leu, Geophys. Res. Lett. 15, 851-854 (1988).
  5.  J-M. Flaud, A. Anantharajah, F. Kwabia Tchana, L. Manceron, J. Orphal, G. Wagner, and M. Birk, J Quant Spectrosc Radiat Transf 224, 217-221 (2019).

 

How to cite: Manceron, L.: Synchrotron radiation and long path cryogenic cells: New tools and results for modelling chlorinated compounds absorption in the 8-12µm atmospheric window, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-8639, https://doi.org/10.5194/egusphere-egu2020-8639, 2020