MMS Observations of Short-Period Current Sheet Flapping

Louis Richard1,2, Yuri Khotyaintsev1, Daniel Graham1, Christopher Russell3, and Olivier Le Contel4

1Swedish Institute of Space Physics, Sweden
2Department of Physics and Astronomy, Uppsala University, Uppsala
3Department of Earth and Space Sciences, University of California, Los Angeles, California, USA
4Laboratoire de Physique des Plasmas, CNRS/Ecole Polytechnique/Sorbonne Université/Univ. Paris Sud/Obs. de Paris, Paris, France

Flapping motions of current sheets are commonly observed in the magnetotail. Various wave modes can correspond to these oscillations such as kink-like flapping or steady flapping (e.g. Wei2019). The period of such oscillating phenomena is usually longer than 100s and a typical observations consist only of a few crossings (e.g. Zhang2002). Here, we present a short period (T=25s) flapping event observed by Magnetospheric Multiscale (MMS) mission at the dusk side plasmasheet on September 14, 2019. Using the multispacecraft observations, the direction of flapping as well as the direction of propagation of the current sheet are determined using the minimum variance, the timing method and the spatiotemporal derivative (Shi2005). It appears that the three methods give similar results with a direction of propagation of the current sheet which mainly lies in the ecliptic plane with a flapping velocity up to 500km/s. Based on the obtained wavelength and the variations of the direction of propagation we discuss which of the wave modes can explain the flapping.