Unsteady energy dissipation in the magnetic reconnection diffusion region

Xiangcheng Dong1, Malcolm Dunlop1,2, Tieyan Wang1, Barbara Giles3, Roy Torbert4, Christopher Russell5, and James Burch6

1RAL Space, STFC, Chilton, Oxfordshire, OX11 0QX, UK
2School of Space and Environment, Beihang University, Beijing, China
3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
4University of New Hampshire, Durham, NH, USA
5Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA
6Southwest Research Institute San Antonio, San Antonio, TX 78238, USA

Magnetic reconnection is a universal physical process during which energy can be transferred from the electromagnetic field to the plasma. Energy dissipation in the diffusion region has always been a significant issue for understanding this energy transport. Using the four MMS spacecraft data, we investigate a magnetic reconnection diffusion region event at the magnetopause. Similar magnetic field and electric current behavior between each spacecraft indicates the formation of a quasi 2D structure. However, we find that the energy dissipation results of each spacecraft are different. Further analysis indicates that the reconnection electric field, E_M, plays a key role in this process. Thus, we suggest that the energy dissipation of magnetic reconnection is unsteady on this spatial or temporal scale, even under stable diffusion conditions.