Evaluation of TROPOMI cloud products for NO2 retrievals

Miriam Latsch1, Andreas Richter1, John P. Burrows1, Thomas Wagner2, Holger Silher2, Michel van Roozendael3, Diego Loyola4, Pieter Valks4, Athina Argyrouli5, Ronny Lutz5, Pepijn Veefkind5, Henk Eskes5, Maarten Sneep5, Ping Wang5, and Richard Siddans6

1Institute of Environmental Physics, University of Bremen, Bremen, Germany
2Max-Planck-Institute for Chemistry, Mainz, Germany
3Belgian Institute for Space Aeronomy, Brussels, Belgium
4Remote Sensing Technology Institute, German Aerospace Center, Wessling, Germany
5KNMI, Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
6Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, UK

The first European Sentinel satellite for monitoring the composition of the Earth’s atmosphere, the Sentinel 5 Precursor (S5p), carries the TROPOspheric Monitoring Instrument (TROPOMI) on board to map trace species of the global atmosphere at high spatial resolution. Retrievals of tropospheric trace gas columns from satellite measurements are strongly influenced by clouds. Thus, cloud retrieval algorithms were developed and implemented in the trace gas processing chain to consider this impact.

In this study, different cloud products available for NO2 retrievals from TROPOMI data are analyzed. The TROPOMI level 2 OCRA/ROCINN (Optical Cloud Recognition Algorithm/Retrieval of Cloud Information using Neural Networks) cloud products CRB (cloud as reflecting boundaries) and CAL (clouds as layers) as well as the FRESCO (Fast Retrieval Scheme for Clouds from Oxygen absorption bands) cloud product are compared with regard to e. g. cloud fraction, cloud height, cloud albedo/optical thickness, flagging and quality indicators. In particular, difficult situations such as snow or ice, sun glint, and high aerosol load are investigated.

The eventual aim of this study is to better understand TROPOMI cloud products and their quantitative impacts on trace gas retrievals. Here, we present first results of a statistical analysis on a limited data set comparing currently existing cloud products and their approaches focusing on NO2.