Large organized structures in stably stratified turbulent shear flows.

Andrey Glazunov¹, Evgeny Mortikov¹,², Grigory Zasko³, Yuri Nechepurenko¹, and Sergej Zilitinkevich⁴,⁵

¹Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow 119333, Russia
²Research Computing Center of Lomonosov Moscow State University, Moscow 119991, Russia
³Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow 125047, Russia
⁴Finnish Meteorological Institute, Helsinki, Finland
⁵Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland

We analyzed the data of the numerical simulation of stably stratified turbulent shear flows. It is shown that, along with chaotic turbulence, the flows contain large organized structures. In the temperature field, these structures appear as inclined layers with weakly stable stratification, separated by very thin layers with large temperature gradients. The existence of such layered structures in nature is indirectly confirmed by the analysis of field measurements. An increase of the turbulent Prandtl number with increasing gradient Richardson number was fixed in simulation data. The hypothesis is proposed that physical mechanism for maintaining of turbulence in supercritically stable stratification is connected with the revealed structures. It is shown that the spatial scales and the shapes of the identified organized structures can be explained using the calculation of optimal disturbances for the simplified linear model.

This study was supported by the Russian Foundation for Basic Research (grants nos. 18-05-60126, 20-05-00776) and by Academy of Finland project ClimEco no. 314 798/799 (2018-2020).