Modulation of PDO in the Arctic tropospheric warming

Lingling Suo1, Yongqi Gao1, Guillaume Gastineau2, Yu-Chiao Liang3, Rohit Ghosh4, Tian Tian5, and Ying Zhang6

1Nansen Environmental and Remote Sensing Center, Bergen, Norway
2Sorbonne Université, CNRS/IRD/MNHN, UMR LOCEAN, Paris, France
3Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, U.S.A.
4Max Planck Institute for Meteorology, Hamburg, Germany
5Danish Meteorological Institute, Copenhagen, Denmark
6Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, People's Republic of China

The Arctic amplified warming under global warming is one of the prominent climate change events during the past several decades. Arctic sea ice retreat contributed the majority of the near-surface warming, and little to the mid-troposphere warming. The remote factors might contribute to or modulate the aloft Arctic warming.

Here we performed a multi-model joint-analysis to study the role of the Pacific decadal oscillation, which is one of the most important recurring ocean-atmosphere variability in the climate system, in the tropospheric Arctic warming. In the multi-model simulation, PDO reduced the Arctic warming trend during 1979-2013 significantly in spring, Autumn and early winter season from the near-surface to the upper troposphere. The reduction of warming reaches 0.3 / 0.2 °C per decade in the upper / lower troposphere.