Early Comparison of OCO-3 XCO2 Measurements with TCCON

Matthaeus Kiel1, Joshua Laughner2, Annmarie Eldering1, Brendan Fisher1, Thomas Kurosu1, Ryan Pavlick1, Gregory Osterman1, Robert Nelson1, Christopher O’Dell3, Peter Somkuti3, Thomas Taylor3, and Coleen Roehl2

1Jet Propulsion Laboratory, Pasadena, CA, USA
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
3Colorado State University, Fort Collins, CO, USA

The Orbiting Carbon Observatory-3 (OCO-3) was successfully launched on May 4, 2019 from Kennedy Space Center via a Space-X Falcon 9. One week later, the instrument was installed as an external payload on the International Space Station (ISS). OCO-3 extends NASA’s study of carbon and measures the dry-air mole fraction of column carbon dioxide (XCO2) in the Earth’s atmosphere from space.

These space-based measurements are compared to ground-based observations from the Total Carbon Column Observing Network (TCCON). TCCON is a global network of high-resolution ground-based Fourier Transform Spectrometers that records spectra of the sun in the near-infrared spectral region. From these spectra, accurate and precise column-averaged abundances of atmospheric constituents including CO2 are retrieved. TCCON data are tied to the WMO scale and serve as the link between calibrated surface in situ measurements and OCO-3 measurements.

OCO-3’s agile 2-D pointing mirror assembly (PMA) allows the instrument to stare at a TCCON station as it passes overhead - providing information about the quality, biases, and errors in the OCO-3 data. Here, we show early comparisons between the OCO-3 XCO2 dataset collected during target mode observations and coincident TCCON measurements and discuss site-dependent biases and its potential origins.