EGU2020-9963
https://doi.org/10.5194/egusphere-egu2020-9963
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Comparison of TROPOMI/Sentinel-5 Precursor NO2 product with ground-based observations in Helsinki and first societal applications

Iolanda Ialongo1, Henrik Virta1, Henk Eskes2, Jari Hovila1, and John Douros2
Iolanda Ialongo et al.
  • 1Finnish Meteorological Institute, SPACE AND EARTH OBSERVATION CENTRE, Helsinki, Finland (iolanda.ialongo@fmi.fi)
  • 2Royal Netherlands Meteorological Institute, Satellite Observations, De Bilt, Netherlands

We evaluate the satellite-based TROPOMI (TROPOspheric Monitoring Instrument) NO2 products against ground-based observations in Helsinki (Finland). TROPOMI NO2 total (summed) columns are compared with the measurements performed by the Pandora spectrometer during April–September 2018. The mean relative and absolute bias between the TROPOMI and Pandora NO2 total columns is about 10 % and 0.12 × 1015 molec. cm-2 respectively. 

We find high correlation (r = 0.68) between satellite- and ground-based data, but also that TROPOMI total columns underestimate ground-based observations for relatively large Pandora NO2 total columns, corresponding to episodes of relatively elevated pollution. This is expected because of the relatively large size of the TROPOMI ground pixel (3.5 × 7 km) and the a priori used in the retrieval compared to the relatively small field-of-view of the Pandora instrument. On the other hand, TROPOMI slightly overestimates relatively small NO2 total columns. Replacing the coarse a priori NO2 profiles with high-resolution profiles from the CAMS chemical transport model improves the agreement between TROPOMI and Pandora total columns for episodes of NO2 enhancement. 

In order to evaluate the capability of TROPOMI observation for monitoring urban air quality, we also analyse the consistency between satellite-based data and NO2 surface concentrations from the local air quality station. We find similar day-to-day variability between TROPOMI and in situ measurements, with NO2 enhancements observed during the same days. Both satellite- and ground-based data show a similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays as a result of reduced emissions from traffic and industrial activities (as expected in urban sites). The TROPOMI NO2 maps reveal also spatial features, such as the main traffic ways, the airport and other industrial areas, as well as the effect of the prevailing south-west wind patterns. 

These first results confirm that TROPOMI NO2 products are valuable to complement the traditional ground-based in situ data for monitoring urban air quality and are already tested by local and national authorities as well as private companies to monitor pollution sources in the Helsinki region (e.g., emissions from traffic, energy production or oil refineries). For example, TROPOMI NO2 products are already used by the oil refinery company NESTE in their sustainability report and by the Finnish Ministry of Environment to map the air pollution levels in Finland.

Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel 5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-329, accepted for publication, 2020.

How to cite: Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 product with ground-based observations in Helsinki and first societal applications, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-9963, https://doi.org/10.5194/egusphere-egu2020-9963, 2020

Displays

Display file