Space-weighted seismic attenuation multi-frequency tomography at Deception Island volcano (Antartica)

Roberto Guardo1, Luca De Siena2, Alberto Caselli1,3, Janire Prudencio4, and Guido Ventura5

1Instituto de Investigación en Paleobiología y Geología (IIPG), CONICET-Univerad de Nacional de Río Negro, General Roca, Argentina (rguardo@unrn.edu.ar)
2Institute of Geosciences, Johannes Gutenberg University, Mainz, Germany (ldesiena@uni-mainz.de)
3Laboratorio de Estudio y Seguimiento de Volcanes Activos (LESVA-IIPG), Universidad Nacional de Río Negro-CONICET, General Roca, Argentina (atcaselli@unrn.edu.ar)
4Departamento Física Teórica y del Cosmos - Área Física de la Tierra, Universidad de Granada, Granada, Spain (janire@ugr.es)
5Istituto Nazionale di Geofisica e Vulcanologia (INGV), Roma, Italy (guido.ventura@ingv.it)

Deception Island is the most active and documented volcano in the South Shetland Islands (Antarctica). Since its last eruption (1970) several experiments have targeted the reconstruction of its magmatic systems. Geophysical imaging has provided new insight into Deception's interior, particularly when using space-weighted seismic attenuation tomography for coda waves. Here, sensitivity kernels have been used to invert coda wave attenuation (Q_c^{-1}). We obtain a multifrequency-dependent model of the magmatic systems at Deception Island using active data, paying particularly attention to data selection and model optimisation. The results have been framed in the extensive knowledge of the tectonics and the geomorphology of the volcano with a GIS, underlining a spatial correlation between high-attenuation anomalies and high thermal activity regions. This inter- and multi-disciplinary analysis improves the interpretation of the dynamics of Deception Island and its related hazards.