The global increase in damaging landslide events is raising the attention of governments, practitioners and scientists to develop functional, reliable and (when possible) low cost monitoring strategies. Several case studies have demonstrated how a well-planned monitoring system of landslides is of fundamental importance for long and short-term risk reduction.
Today, the temporal evolution of a landslide is addressed in several ways, encompassing classical and more complex in situ measurements or remotely sensed data acquired from satellite and aerial platforms. All these techniques are adopted for the same final scope: measure landslide motion over time, trying to forecast its future evolution or at least to reconstruct its recent past. Real time, near-real time and deferred time strategies can be profitably used for landslide monitoring, depending on the type of phenomenon, the selected monitoring tool and the acceptable level of risk.
The session follows the general objectives of the International Consortium on Landslides, namely: (i) promote landslide research for the benefit of society, (ii) integrate geosciences and technology within the cultural and social contexts to evaluate landslide risk, and (iii) combine and coordinate international expertise.
Considering these key conceptual drivers, we aim to present successful monitoring experiences worldwide based on both in situ and/or remotely sensed data. The integration and synergic use of different techniques is welcome, as well as newly developed tools or data analysis approaches (focusing on big data management). We expect case studies in which multi-temporal and multi-platform monitoring data are exploited for risk management and Civil Protection aims with positive effects in social and economic terms.

Convener: Lorenzo SolariECSECS | Co-conveners: Corey Froese, Peter Bobrowsky, Davide Bertolo, Mateja Jemec Auflič, Federico Raspini, Veronica Tofani
| Attendance Thu, 07 May, 10:45–12:30 (CEST)

Files for download

Session materials Session summary Download all presentations (122MB)