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What?
Statistical investigation of nationwide damage survey by Peruvian authorities after the El Niño 2017, 
using explanatory features derived from topography, remote-sensing, and open data.

How?

Why?
Neither damage models, nor statistical investigations with real observational data exist for such 
compound events. We aim to gain knowledge about damage processes during El Niño events, 
which is necessary to develop damage models and risk assessment approaches.

1. Unsupervised clustering: grouping data into regions of different dominant processes
2. Supervised classification: learning patterns of ordinal damage grades
3. Model inspection: importance rankings and partial dependence plots reveal drivers of damage



Damage: 119,675 buildings in 4 ordinal damage classes (D1-D4) from a field survey by COFOPRI
D1: Non-structural damage, e.g. dented doors, broken windows, sanitation etc.
D2: Moderate structural damage which is repairable; building is still habitable
D3: Heavy structural damage which is repairabe; building is temporarily uninhabitable
D4: Irreparable damage or collapse

Features:
Rainfall: Tropical Rainfall Measurement Mission
Topography: MERIT DEM
Water: Global Surface Water, OpenStreetMap Waterways
Soil & Vegetation: SoilGrids, TanDEM Forest/Non-Forest, Sentinel-2 spectral ratios
Urbanity: Global Urban Footprint, WorldPop, OpenStreetMap Roads

Raw Data



Method
t-SNE + OPTICS

Labels
#1 Urban
#2 Rivers/North
#3 Rural/Lambayeque
#4 Mountains
#5 Canyons
#6 Urban/Piura
#7 RioPiura/upper
#8 Max.Rainfall
#9 RioPiura/lower



Method
t-SNE + OPTICS

Labels
#1 Urban
#2 Rivers/North
#3 Rural/Lambayeque
#4 Mountains
#5 Canyons
#6 Urban/Piura
#7 RioPiura/upper
#8 Max.Rainfall
#9 RioPiura/lower



Rainfall

Topography

Water

Vegetation & Soil
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Feature distributions and damage frequency per cluster
Engineered features based on

More D4 cases in the
canyons than in the area
of maximum rainfall



Sampling: nested cross-validation 
Class balance: equal (oversampling)

Algorithms:
• Ordinal Logistic Regression (OLR)
• Naive Bayes (NB)
• Linear Support Vector Machine (LinSVM)
• Radial Support Vector Machine (SVM)
• Random Forest (RF)

Performance: 
Consistently above chance agreement
Non-linear models (SVM, RF) perform better
Limitation: resolution of data, no building attributes

Classification



• TRMM_sum & TRMM_max = Rainfall
Consistently selected by all algorithms. Sum is more
important for fluvial systems, maximum for canyons

• TWI = Topographic Wetness Index                      
Most important for low elevation and high rainfall

• HAND = Heigth Above Nearest Drainage

• Erosion-LS = Slope length and steepnes factor

• BSI_acc = Bare Soil Index, weighted along the flow
accumulation raster

• FNF_density = Forest cover within 1km²

Feature Importance

Importance was computed as drop of model skill, when features
are randomly permuted. This initial score was normalized for all 
algorithms and weighted by the model skill to create an aggreated
ranking, while preserving the individual rankings in the
visualization. Note that those feature which define a cluster have
low variance within this same cluster, and will not be „important“,
e.g. rainfall maximum is not dominating in cluster #8



Partial dependence plots
• Using all data, i.e. without clustering, to

better understand the model behaviour

• Forest cover, as indicated by FNF_density,
exhibits no meaningful net-effect in the PDP. 
This contradicts the importance ranking*, but 
is more in agreement with our expectations.

• Urbanity, as indicated by GUF_density and
DistToRoads, was not among the top 
features, but has a strong effect on the
predictions: the more urban, the lower(!) the
damage of individual buildings.

• 2D interaction plots further show that
Rainfall (TRMM_sum & TRMM_max) 
seems to cause damage D1-D3 in ascending
order, but fails to explain D4 (collapsed).

Only RF
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Feature value (normalized)

*The importance ranking for „All Data“ is dominated by
complex algorithms, due to the low performance of linear 
algorithms, and therefore rather difficult to interpret.



• Entirely data-driven

• Visualizes model behaviour: 
in this case, channels and
desert areas were learned
to be dangerous, while
urban areas seem rather
safe in case of El Niño

• Potential application of a 
damage model, e.g. to help
identify critical areas for
spatial planning. Could be
intersected with exposure.

• Limitation: this example is
event-specific for 2017,  
due to the used rainfall data

Damage probability map (example based on RandomForest)



Thank you



Hierarchical clustering on Spearman correlation

Appendix
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