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Observations: Plasmoids in the Corona

Kumar+ 2019



Observations: Plasmoids in the Corona

e First observation of
plasmoid-like blobs in

breakout reconnection
(Kumar+ 2019)
e Also seenin flares (e.g.,
Liu+ 2013), jets (Kumar+
2018), PSP/WISPR

observations of post-
CME current sheet
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Observations: Bursty Energy Release in Flares

e Quasi Periodic Pulsations
(QPPs)

* Fluctuating emission across
electromagnetic spectrum

* Signature of bursty energy
release (plasmoids/
turbulence)?
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Theory: Plasmoids in Reconnection

z9 ,

e Critical for fast reconnection in MHD
e E.g., plasmoid instability (Loureiro+ 2007)

e Efficient particle acceleration sites
e Drake+ 2006; Dahlin+ 2014; Guo+ 2014

MHD (Samtaney et al., 2009) >



Theory: Particle Acceleration in Plasmoids
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* Fermi mechanism of Drake et al., 2006 —a e
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* Particles trapped in plasmoids reflect W,
from contracting field lines
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Turbulent 3D Reconnection

* Plasmoid/flux rope structure is highly complex in 3D reconnection (no
longer ‘closed particle traps’)

 What happens to the Fermi acceleration picture?

Secondary
flux ropes

Daughton+ 2011 Huang+ 2016
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Turbulent 3D Reconnection
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Power-law Spectra in 3D Kinetic Simulations

* Li+ 2019 compared 2D, 3D kinetic PIC
simulations
* Low beta (free magnetic energy/particle >>T,)

* Power law forms only in 3D (turbulent 1012
transport)

* Conclusion: kinetic simulations
demonstrate plasmoids are efficient
particle accelerators
V)

* However, kinetic simulations are limited to =
small scales (¥m)

e Cannot capture global dynamics of flares

» Self-consistent MHD simulations are
necessary to understand large-scale energy L
buildup, current sheet 10~
formation/destabilization Li+ 2019
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Plasmoid Formation in MHD Simulations of
Eruptive Flares

t= 96000.00s |

* High resolution 2.5D MHD
simulations (Karpen+ 2012, Guidoni+
2016)

* Energized by large-scale shear flows

* Two reconnection sites generate
many plasmoids
* Breakout reconnection initiates eruption

* Flare reconnection drives bulk energy
release

 What happens in a 3D system?
Guidoni et al., 2016
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High-Resolution 3D MHD Simulations with
ARMS

* Adaptively Refined MHD Solver (DeVore+ 2008)

* Achieves high resolution via adaptive mesh refinement
(AMR)

* R, <r <30R,,6r ~0.6Mm at highest refinement

* Driven using efficient new STITCH method
 Statistical InjecTion of Condensed Helicity (Dahlin+ in prep.)

e Approximation to Helicity Condensation (Knizhnik+ 2017,
Dahlin+ 2019)




Self-Consistent Energy Build Up, CS
Formation, and Energy Release

* Initial magnetic field is
potential (current-free)

e STITCH injects free
energy/helicity

e Current sheets form &
reconnect self-
consistently




Fine-scale Current Sheet Structure

Guide Field

 Two important features: guide field and plasmoids



Shear/Guide Field

e Guide field weakens over the
course of the flare
* Associated with release of free

energy, evolution toward potential
field

e Corresponding observational
signature: reduction of shear in post

Dahlin+ in prep.
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Plasmoid Formation
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3D Plasmoid Structure

Synthetic White-Light Coronagraph
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3D Plasmoid Structure

e Field-line chaos

* Neighboring, tightly
wrapped field lines map
both upward & downward

* Field line chaos in 3D
enhances transport (and
acceleration, Dahlin+
2015,2017; Li+ 2019)
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Test Particle Simulations: Acceleration

* Q. Xia+ 2020 :
» Uses output from high- : o
resolution 2D (Karpen+2012) - v
and 3D simulations (Dahlin+
2019) \ 40 i: -
* Acceleration is strongerat ~ *: P
flare current sheet than at | e
breakout "
e Strongest acceleration occurs
during impulsive phase
w/guide field e
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* Two primary acceleration
mechanisms

* Fermi acceleration (field-line
contraction) primarily plasmoids

 Compression in post-flare loops

* Up next: test particle simulations in
new high-resolution 3D MHD
simulation




Hybrid Kinetic/MHD Model kglobal

Aim: bridge macro/micro-scales of flare particle acceleration in one simulation
Hybrid fluid/particle code kglobal under development (Drake+ 2019; Arnold+ 2019)
Captures MHD macro-scale and self-consistent particle acceleration & feedback on dynamics

Micro-scale kinetic structure does not play significant role in particle acceleration and may be
neglected (Dahlin+ 2016)




Event Modeling with ARMS

* Goal: model reconnection onset,
plasmoid formation, and particle
acceleration in real events using
ARMS

e Case study: eruption from simple
bipolar AR 11484

SDO/AIA 304

STEREO/EUVI 304
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Event Modeling with ARMS

* Global PFSS magnetic field in ARMS

* AR 11484 is an embedded bipole (jet-
like topology) in a coronal hole

* Driving using STITCH
* Statistical InjecTion of Condensed
Helicity
e Statistical approximation to full
helicity condensation model

(Antiochos+ 2013, Knizhnik+ 2015,
Dahlin+ 2019)

* Simple/portable, flexible, efficient




Conclusions

* New 3D, high resolution (AMR) MHD simulations of an eruptive flare
e Calculation includes self-consistent formation & destabilization of current sheet

* Reconnection guide field (magnetic shear) weakens as flare progresses
* Implications for flare particle acceleration (optimal guide field, Dahlin+ 2017)

* Many plasmoids are generated
 Complex, open structure & field line chaos

Stay tuned for...

* Tracking plasmoids (statistical properties, etc.)

* Implications for particle acceleration (test particles, impact of shear/guide field)
* Hybrid model under development

* Event modeling & comparisons to observations






