
An idealised model of of the Indian monsoon onset

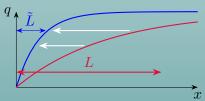
Lucy Recchia¹, Stephen Griffiths¹, Doug Parker² ¹ School of Mathematics, University of Leeds ² School of Earth and Environment, University of Leeds L.G.Recchia1@leeds.ac.uk

A simplified model of moisture transport

• Convective flux $F = \frac{q_1-q_2}{T_c}$: mixes q_1 and q_2 on timescale T_c .

- ► Replenishment (evaporation, moist inflow) R = q₁-q_{*}(x)/T_r adjusts q₁(x, t) towards q_{*}(x) on timescale T_r. Here take q_{*}(x) = 0 (dry) for x < 0 and q_{*}(x) = 1 for x > 0, i.e., no imposed lengthscale.
- ▶ Yields linear PDEs in (x, t), with $q_2(x, 0) = 0$ (dry inflow).

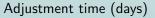
Monsoon onset as a transition

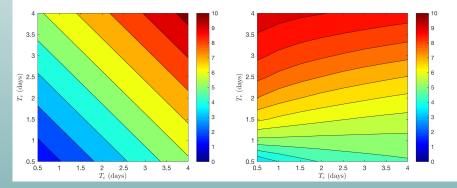

There is a steady state solution in terms of $L = U(T_c + T_r)$:

$$q_1(x) = 1 - \frac{T_r}{T_c + T_r} \exp(-x/L), \ q_2(x) = 1 - \exp(-x/L).$$

We call L the monsoon lengthscale: it is the distance over which the flow transitions from dry (in the NW) to moist (in the SE). For example, $U = 10 \text{ m s}^{-1}$, $T_c = T_r = 1 \text{ day} \implies L = 1700 \text{ km}$.

Weakening upper-level flow (reducing U > 0), increasing convection (reducing T_c), or increasing low-level replenishment (reducing T_r) implies a new equilibrium with smaller $L = \tilde{L}$.


Solution transitions to a new equilibrium. Moisture front moves left (NW) against the upper-level flow. This can be viewed as the monsoon onset.



Monsoon advance and timescales

Sample numerical experiments: U changing from $10 \rightarrow 5 \,\mathrm{m \, s^{-1}}$, and $T_{\rm c}$ and $T_{\rm r}$ each halving. So $L \rightarrow \tilde{L} = L/4$.

Advance: $L - \tilde{L} (\times 10^3 \text{ km})$

At small $T_{\rm c}$ and larger $T_{\rm r}$, find monsoon advances over $\approx 3000\,{\rm km}$ that take in excess of a week, similar to those on W coast of India.