Leeds University Petro physics

Modelling and Simulation of Heterogeneous and Anisotropic Formations using Advanced Fractal Reservoir Models

Piroska Lorinczi, Paul W.J. Glover, Saud Al-Zainaldin, Hassan Al-Ramadhan, Saddam Sinan, George Daniel, I. Obielum

A justified educated guessing game:

- Physical properties obtained from few wells
- Data incomplete and variability completely unknown at smaller scales (say < 50 m)</p>
- Interpolated in the inter-well volume using variogramfiltered krigging
- No information available for accurate well placement
- No information about reservoir heterogeneity measured or used
- No information about reservoir anisotropy measured or used in modelling and simulation

Reservoi 60 dell Fractal

AFRMs can depict and control heterogeneity

- ✤ AFRMs can depict and control xy, yz and zx anisotropy
- AFRM accuracy can be verified
- AFRM allows generic sensitivity tests for heterogeneity, anisotropy, well placement and orientation
- AFRM is more accurate than conventional models in simulations
- ✤ AFRM contains information at all scales larger than cell size
- AFRMs can be fully reservoir-conditioned

... in this presentation

What fractals can do for you ...

How to make Advanced Fractal Reservoir Model (AFRMs) Generic fractal modelling

The effect of heterogeneity on oil production data The effect of anisotropy on oil production data The effect of well placement and orientation

Conditioned fractal reservoir modelling

How to use AFRMs with real reservoirs

The Future

Creating flexible software for modelling

Structured objects exhibiting self-similar behaviour at all scales.

Well-defined structure at a given scale: Full spatial correlation

Fractal: Partial spatial correlation

Introduction

Random distributions: No spatial correlation

Interpolation of wells: Only large scale variability is taken account of

Interpolation of wells with seismic input: Range of scales in inter-well volume extended to seismic resolution

Fractal Interpolation (FSMA): Takes account of all data from the reservoir scale to the cell scale

eneric Models

Conditioned Models

Making AFRMs

How is it possible to make fractal reservoir models which have:

- **o** 3D
- o controlled heterogeneity
- o controlled anisotropy
- o can be fully validated, and
- o can be used to model poroperm curves

Piroska Lorinczi, Saud Al-Zainaldin

Fourier Filtering method in

9

The Fourier Filtering method

AFRMs

Fractal dimension and anisotropy controlled Exact and repeatable structure defined by a unique random number key

Data required: Physical and fractal dimension and two anisotropy factors

Conditioned Models

10

Fractal volumes for different heterogeneities (fractal dimensions) and the same isotropy

Data required: Physical and fractal dimension and two anisotropy factors

Testing the fracta ensions σ

Generic Models

22

AFRMs

Introduction

12

21.9

21.8

21.7

21.6

21.5

21.4

21.1

21

20.9

20.8

20.7

20.6

19.6

19.5

19.4

19.3

19.2

Fractal volumes for different heterogeneities (fractal dimensions) and the same isotropy

Testing the anisotropies

Introduction

AFRMs

Generic Models

Data required: Mean and standard deviation of each parameter

ntroduction

Introduction AFRMs Generic Models Conditioned Models The Future 17

Calculating permeability

Using the RGPZ method for clastic rocks

 $k = \frac{d_{grain}^2 \phi^{3m}}{4am^2}$

or its carbonate or generic modifications appropriately.

Introduction

AFRMs

Generic Models

Conditioned Models

18

Synthetic poroperm plots

Data required: Pore throat conversion factor, interfacial tension, wetting angle

AFRMs

<mark>21</mark>

saturation Water

Water saturation depends on λ , which depends on the fractal dimension

$$\lambda = 3 - \mathfrak{D}$$

AFRMs

Generic Models

Conditioned Models

here the Brooks-Corey-Mualem model

Conditioned Models

AFRMs

Relative permeabilities

23

Generic modelling

What is the effect of:

- o Heterogeneity
- Anisotropy
- Well Placement
- Orientation

on reservoir production from a model reservoir?

Saud Al-Zainaldin, George Daniel, Saddam Sinan, Piroska Lorinczi

A Typical Finished AFRM

All the input parameters needed for full simulation.

Fully specified, unique structure, repeatable model. Not stochastic.

Introduction

Generic Models

Conditioned Models

e Future

Introduction

- Finite-difference Roxar Tempest[®] Black-Oil simulator (ver. 7.0.4)
- Anisotropy causes striping in the *x*-lateral direction

Generic Models

he Future

26

Parameter	Value
Number of grid blocks	128 × 128 × 32; 524288 voxels
Reservoir dimensional extent	12.8 km laterally and 96 m vertically
Depth of top reservoir	2000 ft
Layers thickness	3 m
Oil-water contact depth	2096 ft

Conditioned Models

Fractal capillary pressure and water saturations

Homogeneous reservoirs (low D) produce at a **higher rate** for **longer** than heterogeneous reservoirs (higher D)

Greater anisotropy χ reduces production rate slightly at each time point

Homogeneous reservoirs (low D) keep the water cut **lower** for **longer** than heterogeneous reservoirs (higher D).

Greater anisotropy χ leads to earlier water breakthrough

Generic Models

Conditioned Models

29

anisotro Effect of changing 3 heterogeneity

Water saturation maps

Higher anisotropy

- Higher anisotropic
- Advance water break-through
- Slightly increased residual oil
- No change in • production rates

31

Effect of heterogeneity: Production

•

•

•

•

•

rates

Higher fractal

dimension

Less spatial

correlation

Permeability map (D= 3.9 | χ_{xv} = 1 | χ_{vz} =3)

Distinct less connected channel

The Futur

Less distinct channels

of high permeability

Lower production

Well placement in isotropic reservoir

Tests done for:

- 3 configurations of random well placement
- Combinations of Injectors I and/or producers P in low or high permeability zones
- 1 to 10 producers and 1 to 5 Injectors
- For conventional and tight reservoirs
- Fractal Dimensions 3.1, 3.5 and 3.9
- Oil production profile, Oil recovery factor, Water cut

54 profiles, each with 15 curves

Well placements *I* and *P* in high permeability (*k*>120 mD cut-off)

Typical well placement results

- Well numbers important but well placement not important for producer only scenarios (irrespective of reservoir type or fractal dimension)
- AOPR increases significantly by adding injector wells (irrespective of reservoir type or fractal dimension)
- AOPR benefits from placing both producers and injectors in high permeability zones
- Time to water break-through not consistently related to a particular well placement but is affected by heterogeneity

Well Orientatior isotropy 4 and

- AFRMs created with different heterogeneities and anisotropies
- Define simple injectorproducer well pattern
- Rotate well pattern with respect to AFRM
- Simulate major reservoir production parameters at each orientation

Well orientation and anisotropy

Production rate initially higher in anisotropic direction, becoming isotropic by late production

he Future

Conditioning to real reservoirs

How can AFRMs be used to represent real reservoirs?

Introduction

Hassan Al-Ramadhan, Piroska Lorinczi

38

Generic Models Conditioned Models The Future

Fundamental differences

Fractal interpolation

Krigged interpolation

The fractal interpolation is not identical to the gold standard reference But it contains information over the whole range of frequencies, whereas the conventional interpolation contains only long wavelength information.

The Futur

Fractal interpolation and scale conservation

Conditioned Models

Introductio

The FRACTAL D = 2.0 **INTERPOLATION** mimics the reference model very well. It contains information over all D = 2.2wavelength scales. The conventional KRIGGED D = 2.4**INTERPOLATION contains** only long wavelength information D = 2.6**Consequently, production** data is simulated from a fractal model of the D = 2.8reservoir

Conditioned Models

Fractal interpolation

Fractal interpolation versus krigging

Homogeneous Reservoir (D=3.0) – Both krigged and fractal interpolations match the reference well.

Heterogeneous Reservoirs (*D*=3.5 and 3.9) – Krigged interpolations badly underestimate production rates, while fractal interpolation matches the gold standard reference well.

Generic Models

Conditioned Models

The Future

...Putting it all together.

Introduction AFRMs Generic Models Conditioned Models The Future 45

AFRMs can depict and control heterogeneity

- ✤ AFRMs can depict and control *xy*, *yz* and *zx* anisotropy
- AFRM accuracy can be verified
- AFRM allows generic sensitivity tests for heterogeneity, anisotropy, well placement and orientation
- AFRM is more accurate than conventional models in simulations
- ✤ AFRM contains information at all scales larger than cell size
- AFRMs can be fully reservoir-conditioned

The Future

Final Message

AFRMs are a powerful new approach to creating realistic 3D geological models of reservoirs for simulation...

... giving insight into how heterogeneity and anisotropy affect reservoir production at all scales and capable of being conditioned to represent real reservoirs.

Leeds University Petro physics