

Simulation study on future gravity missions with constellations and formations of small satellites

May 8, 2020

Nikolas Pfaffenzeller, Roland Pail (Technical University of Munich), Tom Yunck (GeoOptics Inc.)

EGU 2020

Motivation

- □ High costs for construction and launch of gravity field satellite missions
- □ Aims of NGGMs:
 - o increase of spatio-temporal resolution
 - reduction of temporal aliasing
- Future concept with small satellites as proposed by Tom Yunck, 2019

- Yunck, T (2019), The Earth Gravitational Observatory: Smallsat constellation for multilink low-low SST, Washington, DC.
- Yunck, T, A Saltman, S Bettadpur, S Nerem, J Abel, M Widner, C Deccia, G Franklin (2019), The Earth Gravitational Observatory: Multisat clusters in chain formations, NASA Mass Change Workshop, Washington, DC
- → What is the impact of different satellite formations and constellations on gravity field solutions?

Gravity field processing

- Reduced scale numerical closed loop simulations
- Simulated Keplerian Orbits
- Simulated instrument errors
 - K-Band Microwave System (single link measurement noise)

Accelerometers

Pairwise links as input for the gravity field determination

Gravity field processing

- Reduced scale numerical closed loop simulations
- Simulated Keplerian Orbits
- Simulated instrument errors
 - K-Band Microwave System (single link measurement noise)

Accelerometers

Pairwise links as input for the gravity field determination

Investigation period: 1 month

Variation of the

- Number of satellites
- Number of inter-satellite links (single, multi ISL)
- Orbit parameters
- □ Spacing of satellites (different at multi ISL)
- □ Input models

Single inter-satellite links = links between adjacent satellites (1-2, 2-3, ...) Multi inter-satellite links = links from each respective satellite to all other satellites

Static case: only instrument behaviour considered Temporal case: additional HIS signal + errors of AO are considered Ocean tides: additional model difference used as errors (FES2004 – EOT08a)

Configurations

case	Altitude [km]	Inclination [°]	Inital mean anomaly
	439	89	
1 2	439 410	89 70	
4	439	89	
4 2	439 410	89 70	
2 3	370 407 445	89 80 70	

- X... number of satellite pairs per orbit
- Y... number of orbits

- Repeat cycle: 17 days
 Inter-satellite distance:
 ~ 200 km
- Single inter-satellite link

Configurations

case	Altitude [km]	Inclination [°]	Inital mean anomaly	
1 2	439 410	89 70		
	439	89		
1 3	370 407 445	89 80 70		
2 3	370 407 445	89 80 70		

- X... number of satellites forming a chain per orbit
- Y... number of orbits
- Z... number of chains per orbit
- Repeat cycle: 17 days
- Inter-satellite distance of neighboring satellites: ~ 200 km

multi inter-satellite links

Simulation Results

static cases: instrument noise

 \Box Increased number of satellites and links \rightarrow better performance

temporal cases: HIS + AO error + instrument noise

 Positive impact of a large number of links and satellites not valid anymore, but spatial distribution is more important

temporal case: co-parametrized two-daily gravity solutions

 Positive impact of a large number of links and satellites not valid anymore, but spatial distribution and number of orbit planes is more important

temporal cases: HIS + AO error + instrument noise, Wiese approach

For shorter sub-periods (e.g. 0,5 days) number of observations is more relevant than for longer sub-periods (e.g. 2 days) to achieve sufficient ground coverage (spatial resolution)

Simulation Results

□ Similar behaviour with ocean tides as temporal cases

Spherical harmonic coefficients - formal errors

Spherical harmonic coefficients - static case

Formal errors and coefficients fit together Lower impact of instrument errors in the constellation with satellite chains

Spherical harmonic coefficients – temporal case

Geoid map with time-variable gravity field signal

Conclusions

- Long satellite chains are not recommended, because they increase only redundancy (and thus reduce effect of instrument errors), but do not improve the dominating error source of temporal aliasing
- Spatial distribution of the satellite pairs more important than the amount of links (chains of satellites) for solutions with non-tidal variations
- Number of observations is primarily relevant to achieve sufficient spatial resolution in the case of short-term co-parameterization of non-tidal temporal gravity signals (Wiese approach)
- Very good performance of constellations with several pairs on the same orbit \rightarrow further detailed studies necessary
- Constellations with high temporal resolution (either multiple satellite pairs or chains of satellites) achieve better results in ocean tides cases
- □ Further investigations:
 - $\odot\,$ co-parameterization of ocean tides \rightarrow high potential due to multiple satellites and increased temporal resolution
 - o updated link strategy for multi-satellite networks

Literature

- Yunck, T (2019), The Earth Gravitational Observatory: Smallsat constellation for multi-link low-low SST, Washington, DC,
- Yunck, T, A Saltman, S Bettadpur, S Nerem, J Abel, M Widner, C Deccia, G Franklin (2019), The Earth Gravitational Observatory: Multisat clusters in chain formations, NASA Mass Change Workshop, Washington, DC

Comparison Bender Constellation – multiple Pairs Constellation

Spherical harmonic coefficients - ocean tides

ocean tides errors in near zonal in all configurations apparent Influence of ocean tides

ocean tides errors can be less decreasd by constellations compared to

- non-tidal
- [®] components

