

European Geosciences Union

General Assembly 2020

Online | 4-8 May 2020

'NOA petrofacies' approach

We defined 'NOA petrofacies' as ideal combinations of lithological and structural features corresponding to distinct asbestos-content classes (Botta et al., 2019).

We calculated and **Asbestos Content Ratio (ACR)** for each NOA petrofacies as:

ACR = n of samples with NOA content > 1000 mg/kg n of analyzed samples

ACR approximates the ratio between the rock volume with NOA > 1000 mg/kg and the considered rock volume.

NOA petrofacies were subdivided into 4 **NOA-content classes** depending on ACR (Fig. 4)

ASSESSMENT OF NOA RISK FOR THE EXCAVATION OF A HIGHWAY TUNNEL SYSTEM ("Gronda di Genova", ITALY) FROM NOA-ORIENTED GEOLOGICAL MODEL TO ASBESTOS QUANTIFICATION

F. Piana^{1,2}, C. Avataneo^{3,5}, L. Barale^{1,2}, S. Botta^{1,5}, R. Compagnoni^{3,2}, R. Cossio^{3,2}, I. Marcelli^{1,5}, S. Tallone¹, F. Turci^{4,2}

1: National Research Council of Italy, Institute of Geosciences and Earth Resources, Torino 2: University of Torino, "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates 3: University of Torino, Department of Earth Sciences 4: University of Torino, Department of Chemistry 5: Gi-RES srl (CNR spin-off company), Torino fabrizio.piana@cnr.it; francesco.turci@unito.it

Highway bypass of the city of Genova

- Total lenght: 72 Km (54 Km tunnels)
- Current stage: working plan

Project website

(in Italian)

• Project value: ~ 4,5 billion €

• About 30 km of tunnels in potentially NOA-bearing lithotypes (NOA: Naturally Occurring Asbestos): meta-ophiolites of Voltri 'Massif' and Sestri-Voltaggio Zone; Figs. 2,3

Spoil management

1000 mg/kg (contamination threshold in Italian regulation)

<u>Total amount of spoils with NOA>1000 mg/Kg?</u>

Goal: improve previous estimation of NOA-bearing rock volumes made since the early stages of the project (Turci et al., 2015)

Calculation of NOA-bearing rock volume

1) Detailed, NOA-oriented geological mapping: distribution of NOA petrofacies within lithotectonic units

Conclusions

Our researches for the geological model for NOA content prediction in the "Gronda di Genova" highway project highlight the importance of:

• a NOA-oriented geological model to define structural domains and as a constraint for representative sampling.

• the definition of **NOA petro-structural facies** as a powerful tool to predict distribution and volume of NOA-bearing rocks within rock volumes in complex geological settings.

Spoils with NOA < 1000 mg/Kg:

tunnel invert filling, realization of filling works in the stilling channel of Genova airport

Spoils with NOA > 1000 mg/Kg: disposal at approved landfill

homogeneous zones, i.e. tunnel segments characterized by one or more NOA petrofacies.

> 4) Calculation of NOA-bearing rock volume: for each homogeneous zone separately, based on the ACR of NOA petrofacies and their relative amounts within that zone

References

Botta et al. (2019) Bull. Engin. Geol. Environ., 79(2020), 185–204, doi:10.1007/s10064-019-01539-6 Turci et al. (2015) In Lollino et al., Engineering Geology for Society and Territory vol.5, Springer, 619-622, doi:10.1007/978-3-319-09048-1 120 CC I Turci et al. (2020) Environ. Engin. Geosci., 26 (1), 113-120, doi:10.2113/EEG-2272

Fig. 3 - Thin section images of chrysotile-bearing antigorite (*a*) and lizardite (*b*) serpentinites from the 'Gronda di Genova' area

