

2-D spherical simulations of mantle convection are popular, either in spherica axisymmetric or spherical annulus geometry A problem is that the geometrical restriction forces a downwelling to deform as it sinks, whereas in 3D it can sink with no deformation. Basically, it is "squeezed" in the plane-perpendicular direction, forcing it to expand in the in plane directions. A rigid/high viscosity downwelling resists this deformation, sinking with a greatly reduced and unrealistic velocity. This can be solved by subtracting the geometrically-forced deformation ("squeezing") from the strain-rate tensor when calculating the stress tensor. Specifically, components of in-plane and plane-normal strain rate that are proportional to radial velocity are subtracted, a procedure that is here termed "anti-squeeze".
It is here demonstrated that this leads to realistic sinking velocities whereas without it, abnormal and unrealistic results can be obtained for high viscosity contrasts.
This correction has been used since 2010 in the the code StagYY for spherical annulus calculations (Tackley, PEPI 2008; Hernlund and Tackley, PEPI 2008).

Review:

Modeling mantle convection in the spherical annulus John W. Hernlund ${ }^{\text {a, },}$, Paul J. Tackley ${ }^{\text {b }}$ Physics of the Earth and Planetary Interiors 771 (2008) 48-54 Conservation of mass is then given by, $\frac{\partial \rho}{\partial t}+\frac{1}{r^{d}} \frac{\partial}{\partial r}\left(r^{d} \rho v_{r}\right)+\frac{\partial}{\partial \phi}\left[\rho\left(\frac{v_{\phi}}{r}\right)\right]=0$. The radial component of the momentum equation is,
 while the angular component of momentum is, $\frac{1}{r^{d}} \frac{\partial}{\partial r}\left(r^{d} \tau_{r \phi}\right)+\frac{1}{r} \frac{\partial \tau_{\phi \phi}}{\partial \phi}+\frac{\tau_{r \phi}}{r}-\frac{1}{r} \frac{\partial p}{\partial \phi}=0$. The deviatoric stresses τ are given by,

(Annulus

In 3-D geometry a rigid/high viscosity block can sink without deforming:

Incompressible spherical annulus geometry The stress terms are:
$\tau_{r r}=2 \eta \frac{\partial v_{r}}{\partial r} \quad \tau_{\phi \phi}=2 \eta\left(\frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi}+\frac{v_{r}}{r}\right) \quad \tau_{\theta \theta}=2 \eta \frac{v_{r}}{r}$
$\tau_{r \phi}=\eta\left(\frac{1}{r} \frac{\partial v_{r}}{\partial \phi}+r \frac{\partial}{\partial r}\left(\frac{v_{\phi}}{r}\right)\right) \quad \tau_{r \theta}=0 \quad \tau_{\theta \phi}=0$
Note that the spherical annulus is the (r, phi) plane but $\tau_{\theta \theta}$ is not zero This can be a problem!
This can be a problem!
Radially-moving material is squeezed as it sinks, forced to deform as
$\dot{e}_{\theta \theta, \text { forced }}=\frac{v_{r}}{r} \quad ; \quad \dot{e}_{r r, \text { forced }}+\dot{e}_{\phi \phi, \text { forced }}=-\frac{\nu_{r}}{r}$
High-viscosity material doesn't want to deform $\rightarrow>$ gets 'stuck'.
Solution: Subtract the squeeze!
Subtract forced strain-rates in the normal stress terms. Assume equal deformation in the Ir and theta-theta directions.
\Rightarrow Anti-squeezed normal stresses: => Anti-squeezed normal stresses
$\tau_{r r}=2 \eta\left(\frac{\partial v_{r}}{\partial r}+\frac{v_{r}}{2 r}\right) \quad \tau_{\phi \phi}=2 \eta\left(\frac{1}{r} \frac{\partial v_{\phi}}{\partial \phi}+\frac{3 v_{r}}{2 r}\right)$
It works! Sinking velocity now ~independent of viscosity (see tests).

In 2-D spherical it must deform as it sinks, which cause it to sink very slowly (blue curves below) or get stuck (model car, right) unless the anti-squeeze correction given here is applied (red curves):

Regarding spherical axisymmetric geometry
Stresses are:
$\tau_{r r}=2 \eta \frac{\partial v_{r}}{\partial r} \quad \tau_{\theta \theta}=2 \eta\left(\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{r}}{r}\right) \quad \tau_{\phi \phi}=2 \eta\left(\frac{v_{r}}{r}+\frac{v_{\theta} \cot \theta}{r}\right)$
$\tau_{r \theta}=\eta\left(r \frac{\partial}{\partial r}\left(\frac{v_{\theta}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}}{\partial \theta}\right) \quad \tau_{r \phi}=0 \quad \tau_{\theta \phi}=0$
The out-of plane stress (phi-phi) is not 0l
Now forced deformation occurs for motion in both radial and theta directions: $\dot{e}_{\phi, \text {,forced }}=-\left(\dot{e}_{\theta \theta, \text { forced }}+\dot{e}_{r, \text { forced }}\right)=\frac{v_{r}}{r}+\frac{v_{\theta} \cot \theta}{r}$

Anti-squeeze could be used in both directions, or use spherical annulus instead.

Regarding compressibility

Now, normal stresses have an addition term subtracting the strain-rate due to velocity
divergence (due to compression/decompression associated with inceasing/decreasing divergence (due to compression/decompression associated with increasing/decreasing pressure.
e.g. $\quad \tau_{r r}=2 \eta\left(\frac{\partial v_{r}}{\partial r}-\frac{1}{3} \nabla \cdot \vec{v}\right)$

In 2-D (Cartesian or spherical) geometries the factor should be $1 / 2$ instead of $1 / 3$,
because the pressure-induced divergence can only be accommodated by strain in 2 dimensions. This is already known in continuum mechanics.
2-D version: $\quad \tau_{r r}=2 \eta\left(\frac{\partial \nu_{r}}{\partial r}-\frac{1}{2} \nabla \cdot \vec{v}\right)$

Recent results using annulus + anti-squeeze

Gondwan Research
Growing primordial continental crust self-

CTOMCHTSHMTM

