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Motivation

What do we know about the magnetic mineralogy of archaeological ceramics?

• From hysteresis/remanence acquisition properties – it always contain a soft magnetic phase and very often 
an additional hard phase(s);

• Magnetization/susceptibility vs. temperature measurements typically yield Curie temperatures >500 °C;

• However, the Verwey transition indicative of stoichiometric magnetite rarely if ever reported;

• Lowrie 3-axis IRM test often reveals a possible presence of a magnetically hard phase with unblocking 
temperatures <200 °C (HCLST phase as introduced in McIntosh, G., M. Kovacheva, G. Catanzariti, M. L. 
Osete, and L. Casas (2007), Widespread occurrence of a novel high coercivity, thermally stable, low 
unblocking temperature magnetic phase in heated archeological material, Geophys. Res. Lett., 34, 
L21302, doi: 10.1029/2007GL031168). 

At least three magnetic phases: maghemite (substituted magnetite), 
hematite, and HCSLT phase (ε-Fe2O3 ?)



Obviously, starting material (clay, etc.) normally does not contain all these 

magnetic phases. They must be therefore formed during the process of ceramics 

making (intentional or not) and should reflect conditions during the latter.

Our project:

Magnetic minerals in the archaeological ceramics and baked clay: genesis, 
composition, and applications in geophysics and archaeology 

(funded by Russian Foundation for Basic Research and Bulgarian Science Fund) 



Samples and methods

➢ Samples: baked clay from prehistoric fires and bricks from various archaeological sites 

in Bulgaria

➢ Experimental methods: IRM acquisition and dc demagnetization curves were measured 

as a function of temperature between 25°C and the maximal temperature at which 

ferrimagnetic signal was still resolvable (typically 520 or 540°C, occasionally up to 

640°C), using a PMC 3900 vibrating sample magnetometer. For selected samples, 

hysteresis loops, dc demagnetization curves, and SIRM thermomagnetic curves were 

measured between 1.8 K and 300 K using a Quantum Design MPMS 3 instrument. 

Magnetic susceptibility was measured as a function of temperature and ac field 

frequency in the 2 – 330 K range using a Quantum Design PPMS instrument.



1 10 100

0.0

0.1

0.2

0.3

0.4

0.5

25612566

2769

28202888

ChSh 62

IL 5

IL 15
MO 33

MO 41

MP 23

MP 31

MSch 2
PK 15

PK 18PK 33

Sh 14

VB 04

VB 14

VB 15

M
rs

/M
s

Hcr / Hc

Hysteresis in 1.8 T, 
room temperature



Remanent coercivity vs temperature in the 25 – 300°C range

0 100 200 300

100

1000

H
c
r,

 O
e

Temperature

 2769

 2820

 IL 05

 MO 41

0 100 200 300

100

200

300

400

500

600

H
c
r,

 O
e

Temperature

 MO 33

 MR 23

 MR 31

 Sh 14

 VB 14

 VB 15



Remanent coercivity vs temperature –
Anatomy of Hcr(T) dependence
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Samples dominated by HCSLT phase.



Hysteresis in ±7 T field at 295 K 
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loops, red – corrected for high-field slope by extrapolating 
dM/dH vs. 1/H dependency to 20 T field.
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Remanence and susceptibility at cryogenic temperatures 
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HCSLT phase — ε-Fe2O3 ? Indeed ?

Gich, M. et al. (2005), J. Appl. Phys., 
98(4), 044307

Jones, R. et al. (2019), Phys. Rev. B, 100(9), 094425.



HCSLT phase — ε-Fe2O3 ? Indeed ?

Jones, R. et al. (2019), Phys. Rev. B, 100(9), 094425.
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Here, we compare magnetic properties of our samples at cryogenic temperatures 

with those of synthetic ε-Fe2O3 (see two previous slides). Even though maghemite 

or substituted magnetite is also present, we would expect a relatively high coercivity 

at room T, and a non-monotonous dependence of coercivity and remanence on 

temperature, were the HCSLT phase be something like pure ε-Fe2O3. Neither is 

observed. Susceptibility vs. temperature curves (slides 10 and 11) are dissimilar too.

One tentative possibility to resolve this conundrum is to assume a rather high, up to 

0.4 per formula unit, degree of Fe substitution by e.g. Al in the ε-Fe2O3 lattice [c.f. 

Namai, A., et al. (2009), Synthesis of an electromagnetic wave absorber for high-

speed wireless communication, J. Am. Chem. Soc., 131(3), 1170-1173].



Conclusions

✓ Studied samples universally contain at least three magnetic phases. One of these is  

magnetically soft and two are magnetically hard. Soft phase is likely a substituted 

magnetite and/or maghemite. Two hard phases show a dramatic difference in their 

Curie temperatures, the lower one ranging from 140 to 220°C and the higher one 

from 500 to 640°C. The latter values imply that hematite also contains a considerable 

amount of impurities.

✓ The phase with 140 to 220°C Curie temperatures (HCSLT phase) may be related to 

orthorhombic iron oxide, ε-Fe2O3. However, Curie temperature of the pure phase is 

somewhat higher, implying that this phase might also be quite heavily substituted with 

e.g. aluminum. This would also help to reconcile the discrepancy between low-

temperature magnetic properties of synthetic ε-Fe2O3 and those observed in our study.



Open questions

✓ What is really the HCSLT phase as occurs in archaeological samples ? 

✓ Does stoichiometric magnetite ever occur in archaeological ceramics ? If not, why ?

✓ What can we tell about ceramics production from its magnetic mineralogy ?

✓ Is there any hope to devise a method for pre-selecting samples for Thellier experiments ?
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Appendix

Discovery of the HCSLT phase
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