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Catchment size ≈ 10 000 km²
Model resolution ≈ 1 km²
Model parameters ≈ 10–50

Parameters to optimize ≈ 
100 000 – 500 000

→ equifinality
→ “ill-posed problem”
→ reduced physical 

meaning of parameters

Parameter estimation for distributed models

In a typical water resource managment problem, we are faced with:
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Parameter estimation for distributed models

In summary:
• Number of parameters to optimize for distributed models is very large: 

→ Difficult to optimize
→ Time-consuming & computational exhaustive

• Optimized parameters are not transferable to other locations
• Often results in patch-work like parameter fields
• Reduced physical meaning of parameters due to parameter equifinality

Possible solution:

Define model parameters with relationship to catchment characteristics, e.g. soil,
vegetation, and geological properties.

→Multiscale Parameter Regionalization (MPR)
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Multiscale Parameter Regionalization (MPR)

=

MPR utilizes observable 
basin physical characteristics 
(e.g. soil, vegetation, and 
geological properties) to 
infer the spatial variability of 
the required parameters.
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A regionalization method developed by Samaniego et al. (2010)

→ available as stand-alone software package

https://doi.org/10.1029/2008WR007327
https://www.ufz.de/index.php?en=40126


Multiscale Parameter Regionalization (MPR)

=

→Main difficulty for application: 
Estimation of the structure of 
transfer functions
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A regionalization method developed by Samaniego et al. (2010)

→ available as stand-alone software package

https://doi.org/10.1029/2008WR007327
https://www.ufz.de/index.php?en=40126


Automatic estimation of transfer functions
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Klotz et al. (2017) were the first to investigate a symbolic regression approach to
automatically estimate transfer functions. By using a simple model and synthetic
data, Klotz et al. (2017) showed that it is possible to automatically estimate transfer
functions from stream data in a virtual setting.

The term symbolic regression refers to methods that search the space of
mathematical expressions while minimizing some error metrics.

Recently, we introduced a new approach for the automatic estimation of parameter
transfer function, named Function Space Optimization (FSO, Feigl et al., 2020).

https://doi.org/10.1002/2017WR021253
https://doi.org/10.1002/essoar.10502385.1


• FSO is a symbolic regression optimization method for
estimating parameter transfer functions for distributed
hydrologic models.

• FSO uses a variational autoencoder (VAE) to transfer the
search of a best fitting transfer function into a continuous
numerical vector space (Function Space).

• So far, FSO has only been applied in a synthetic setting
which showed its potential ability to solve the problem of
transfer function estimation.

• For methodological details refer to Feigl et al. (2020)
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Function Space Optimization (FSO)

FSO variational autoencoder

Inputs Encoder Function Space Decoder Outputs
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https://doi.org/10.1002/essoar.10502385.1


FSO generates possible functions from a Context free grammar (CFG). A CFG
defines rules, variables, functions and operations for creating transfer functions.
The operators and functions used in this study are:
Operators: +, - , *, /, ^
Functions: exp, log10, log, sin, cos, tan, abs, acos, asin, atan, cosh, sinh, sqrt
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FSO workflow
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The assembly phase results in a trained variational autoencoder that can generate 
transfer functions from a continuous vector space, called Function Space.
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FSO workflow
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• The DDS algorithm (Tolson & Shoemaker,
2007) for continuous optimization is used
to search through Function Space.

• For each iteration a new transfer function
is generated from the FSO autoencoder and
used in the hydrologic model.

• The optimization loop is stopped after
convergence or after reaching the
maximum number of iterations.
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FSO workflow
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https://doi.org/10.1029/2005WR004723


Scaling

• Scaling of the geo-physical catchment properties is necessary to make them 
comparable and to not induce a bias resulting from different scales.

• In FSO, all geo-physical properties are scaled to the interval [0, 1] by their physical 
bounds, e.g. sand content from the range [0, 100] to [0, 1]. These scaled variables 
are denoted as e.g. 𝑠𝑎𝑛𝑑01.

• The values of the FSO transfer functions are then scaled to the parameter bounds 
before applying them in the model:
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FSO parameter scaling
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𝑥[𝑎,𝑏] = 𝑎 +
(𝑥−min(𝑥))(𝑏−𝑎)

max 𝑥 −min(𝑥)
, 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 𝑎, 𝑏



FSO-mesoscale Hydrologic Model (mHM) case study

Aim:
To assess FSO‘s ability to estimate transfer functions in a real world setting using a 
model that already defines all its parameters by using transfer functions.

Setup:
• Apply mHM on 5 basins in the Neckar catchment
• Catchment data with 100 m and parameter fields with 4 km resolution
• 10 years each for training & testing and 1800 days spin-up
• Optimize 2 transfer functions: saturated hydraulic conductivity & Field capacity
• Compare FSO results to mHM parameter optimization results
• Standard values are used for all other model parameters
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The mesoscale Hydrological Model (mHM)

• Developed by Samaniego et al. (2010)

• Spatially explicit distributed model

• Uses grid cells as primary units

• Defines parameter fields with the
Multiscale Parameter Regionalzation
method (MPR)

• The applied version of MPR allows to
flexibly set transfer functions

• The model setup used in this study is
equivalent to the one used in Zink et al.
(2017)
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https://doi.org/10.1029/2008WR007327
https://doi.org/10.5194/hess-21-1769-2017


Case study – Neckar catchment

Resolution:
• Spatial predictors: 100 x 100 m
• Model grid: 4 x 4 km

Basin data:
• 5 basins
• Training: 10 yrs data 
• Testing:   10 yrs data
• Spin-up: 1800 days

Spatial predictors:
• Mean sand percentage
• Mean clay percentage
• Mineral bulk density
• Aspect
• Terrain slope

Please refer to Zink et al. (2017) for 
the data sources.
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https://doi.org/10.5194/hess-21-1769-2017


For this case study a weighted mean of all basin KGEs (Gupta et al., 2009) was chosen as objective
function for the FSO optimization:

𝑚𝑒𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾𝐺𝐸 =
σ𝑖 = 1
𝑚 𝑤𝑖𝐾𝐺𝐸 𝑄𝑜,𝑖 , 𝑄𝑝,𝑖

σ𝑖 = 1
𝑚 𝑤𝑖

with the weights 𝑤𝑖 = 1 − 𝐾𝐺𝐸 𝑄𝑜,𝑖 , 𝑄𝑝,𝑖 for all 𝑖 ∈ 1, . . . , 𝑚 . 𝑄𝑜,𝑖 and 𝑄𝑝,𝑖 are the observed and

predicted time series of discharge for basin i, respectively.

The resulting applied loss function consists of the mean weighted KGE and a penalty for function length
to avoid overfitting with complex functions:

𝑙𝑜𝑠𝑠 = 𝑚𝑒𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐾𝐺𝐸 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ ∗ 0.001

This loss function aims to produce equally good results in all basins and therefore complies with the
goal of finding a global transfer function.
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Case study - loss function
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https://doi.org/10.1016/j.jhydrol.2009.08.003


Case study – transfer functions

The original mHM transfer functions of the parameters are:

Saturated hydraulic conductivity (cm/d):

𝐾𝑆𝑎𝑡 = 𝛾1 ∗ 𝑒𝑥𝑝 𝛾2 + 𝛾3 ∗ 𝑠𝑎𝑛𝑑 − 𝛾4 ∗ 𝑐𝑙𝑎𝑦 ∗ log(10)

− Only dependent on geo-physical catchment properties. 
− 4 optimizable parameters: 𝛾1, 𝛾2, 𝛾3, 𝛾4

Field Capacity (-):

𝐹𝑖𝑒𝑙𝑑𝐶𝑎𝑝 = 𝑇ℎ𝑒𝑡𝑎𝑆 ∗ exp(𝛾5 ∗ 𝛾6 + 𝑙𝑜𝑔10 𝐾𝑆𝑎𝑡 ∗ log(𝑣𝐺𝑒𝑛𝑢_𝑛)

− 2 optimizable parameters: 𝛾5, 𝛾6
− Dependent on 3 other mHM parameters: ThetaS, Ksat, v_Genu_n
→ FSO also uses these 3 parameters as possible input variables for Field Capacity
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Preliminary results – overview 

mHM (MPR)

Time period mean KGE Basin 6335600 Basin 6335601 Basin 6335602 Basin 9316464 Basin 9316466

Training 0.702 0.469 0.777 0.878 0.748 0.656

Testing 0.704 0.512 0.826 0.840 0.664 0.650

FSO-mHM (MPR)

Training 0.742 0.643 0.863 0.839 0.674 0.692

Testing 0.734 0.671 0.877 0.760 0.656 0.708
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All mHM results (without FSO) are generated by optimizing the parameters for KSat and FieldCap and using
the standard values for all other parameters. FSO-mHM transfer functions increased the performance of three
basins, while two were slightly decreased. Performance in training and testing time period is similar for all
basins, except basin 633560 which showed a decrease of about 0.08 KGE in the testing time period. The FSO-
mHM predicted time series in the testing time period are significantly different from the mHM time series.

Mean testing differences
Difference in m³/s (95% CI) 31.8 (30.1, 33.7) 14.5 (13.5, 15.5) 8.8 (8.3, 9.2) 0.7 (0.5, 0.8) 6.0 (5.7, 6.3)

p-value < 2.26×10-16 < 2.26×10-16 < 2.26×10-16 < 2.26×10-16 < 2.26×10-16



Preliminary results – discharge time series 

Observed and simulated discharges for a year of the testing period (1984) 
for basin 6335600 17/22

The resulting FSO parameter
fields improved the performance
especially in the largest basin
(6335600). Standard values for
all parameters combined with
FSO estimated Ksat and Field
capacity parameters resulted in
reasonable discharges.

Mean differences
m³/s (95% CI) p-value

Observation vs. FSO-mHM 52.1 (60.8, 43.4) < 2.26×10-16

Observation vs. mHM 79.0 (72.5, 85.5) < 2.26×10-16

FSO-mHM vs. mHM 26.9 (21.3, 32.4) < 2.26×10-16



Saturated hydraulic conductivity (cm/d):

mHM (MPR) : 𝐾𝑆𝑎𝑡 = 𝛾1 ∗ 𝑒𝑥𝑝 𝛾2 + 𝛾3 ∗ 𝑠𝑎𝑛𝑑 − 𝛾4 ∗ 𝑐𝑙𝑎𝑦 ∗ log(10)

FSO-mHM (MPR) : 𝐾𝑆𝑎𝑡 =
𝑐𝑙𝑎𝑦01 ∗𝑎𝑠𝑝𝑒𝑐𝑡01

𝑙𝑜𝑔10(𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦01)
+

atan(𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦01)

𝑐𝑙𝑎𝑦01

Field Capacity (-):

mHM (MPR) : 𝐹𝑖𝑒𝑙𝑑𝐶𝑎𝑝 = 𝑇ℎ𝑒𝑡𝑎𝑆 ∗ exp(𝛾5 ∗ 𝛾6 + 𝑙𝑜𝑔10 𝐾𝑆𝑎𝑡 ∗ log(𝑣𝐺𝑒𝑛𝑢_𝑛)

FSO-mHM (MPR) : 𝐹𝑖𝑒𝑙𝑑𝐶𝑎𝑝 =
1.71 ∗𝑠𝑙𝑜𝑝𝑒01

0.93

𝑐𝑙𝑎𝑦01
− 𝑏𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦01

The FSO estimated KSat function uses additional inputs compared to the mHM function. The FSO
estimated Field capacity is dependent on soil properties but does not use any model parameters.

Preliminary results – transfer functions
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Preliminary results – saturated hydraulic conductivity

FSO-mHM (MPR) mHM (MPR)

Resulting KSat parameter fields on the 100 x 100 m grid for the top layer 
of the model (tillage layer, first 20 cm) 19/22



Preliminary results – Field Capacity

FSO-mHM (MPR) mHM (MPR)
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Resulting FieldCap parameter fields on the 100 x 100 m grid for 
the top layer of the model (tillage layer, first 20 cm)



Preliminary results – Optimization  
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The FSO optimization run, showing the developement of KGE values with 
numbers of iterations.



Discussion

• The presented preliminary result are based on less than 300 iterations of the FSO
optimization, which limits their interpreation.

• The FSO parameter fields show a higher variation of values on the small scale
information.

• The Field capacity values estimated by FSO show a negative correlation with values
calculated by standard mHM functions.

• FSO already showed improvement in the model fit after 200 iterations. However,
the estimation procedure is based on only 5 basins. Also, the transferability of the
optimized functions to other basins was not tested.

• This study shows promising first results for automatically estimating transfer
functions with real world data.
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