Tracking the Differential Transport and Acceleration of Nitrogen and Oxygen lons from the Terrestrial Ionosphere to the Inner Magnetosphere

Raluca Ilie¹, *Mei-Yun Lin*¹, Alex Glocer², Fraz Muhammad Bashir¹ ¹University of Illinois at Urbana Champaign ² NASA Goddard

Charged particles escape via open field lines to outer space or the Earth magnetosphere

F_1 = Gravitational F_2 = Electromagnetic

 $\mathsf{E} = \frac{1}{2}\mathsf{m}\mathsf{v}^2 - \frac{\mathsf{g}\mathsf{M}\mathsf{m}}{r}$

 $\frac{\mathsf{E}_{\rm esc}\left(\mathsf{H}^{+}\right) \sim 10 \mathrm{eV}}{\mathsf{E}_{\rm esc}(\mathrm{e}^{-}) = 0.7 \mathrm{eV}}$

Observations of N⁺ in the Earth's lonosphere

N⁺Observations in the Magnetosphere

Motivation: Unexplained Fast Decay of O⁺ in the Magnetosphere

Closer to the Earth, equatorially mirroring N⁺ ions with energies > 10KeV are faster removed from the system than the O⁺ ions, and their lifetime is at least one order of magnitude shorter.

Effect of N⁺/O⁺ ratio in Inner Magnetosphere

- TWINS-like oxygen ENA fluxes can be calculated from the HEIDI differential fluxes for different ion species. The plots below are extracted at hour 8 during the 12 hour simulation.
- When O⁺ and N⁺ densities are equal, the peak flux of O ENA is half of the O ENA flux when N⁺ is absent.

 $\phi_{ENA} = \int \phi_{ion}(l) \sigma_{CE} n_H(l) dl$

Composition	Oxygen ENA	Nitrogen ENA
$\frac{1}{0\% \text{ N}^+ + 100\% \text{ O}}$	+ 1.64	0.0
$10\% \text{ N}^+ + 90\% \text{ O}$	+ 1.47	0.28
$50\% \text{ N}^+ + 50\% \text{ O}$	+ 0.82	1.39
$90\% \text{ N}^+ + 10\% \text{ O}$	+ 0.16	2.50

NASA TWINS Study

THE PROBLEM:

Most instruments flying in space cannot distinguish them apart, due to instrument poor mass resolution.

How does the ion composition affect the ionospheric outflow?

- Albeit limited, the existing observations indicate that O⁺ and N⁺ exhibit a different behavior as affected by solar radiation, solar wind, and geomagnetic activities
- No studies considered the outflow of N⁺, in addition to that of O⁺ from first principles, in spite of:
 - different ionization potential,
 - different chemistry
 - different scale heights
 - different pathways of energization

NUMERICAL APPROACH

NUMERICAL APPROACH

Continuity Equations

ions

HYDRODYNAMC

NUMERICAL APPROACH

Continuity Equations

HYDRODYNAMC

ions

	Chemistry reaction	Chemistry process	Reaction rate
	Ion atom interchange	$N_2 + O^+ \longrightarrow NO^+ + N$	1.2×10^{-12}
Chemical Scheme	Charge exchange	$O^+ + O_2 \longrightarrow O_2^+ + O$	2.1×10^{-11}
	Dissociative charge transfer	$\operatorname{He}^+ + \operatorname{O}_2 \longrightarrow \operatorname{O}^+ + \operatorname{O} + \operatorname{He}$	9.7×10^{-10}
	Charge exchange	$\begin{array}{l} \mathrm{He^{+}} + \mathrm{N_{2}} \longrightarrow \mathrm{N_{2}^{+}} + \mathrm{He} \\ \mathrm{He^{+}} + \mathrm{N_{2}} \longrightarrow \mathrm{N^{+}} + \mathrm{N} + \mathrm{He} \end{array}$	5.2×10^{-10} 7.8×10^{-10}
New 3iPWOM	Charge exchange	$\begin{array}{l} H^{+} + O \longrightarrow H + O^{+} \\ H + O^{+} \longrightarrow H^{+} + O \end{array}$	$\begin{array}{c} 2.2\times 10^{-11}\times T_e^{0.5} \\ 2.5\times 10^{-11}\times T_e^{0.5} \end{array}$
sources/losses H', He', O'	Recombination	$O^+ + e^- \longrightarrow O$	$3.7 \times 10^{-12} \times (\frac{250}{T_e})^{0.7}$
for O ⁺	Recombination	$\mathrm{H^{+} + e^{-} \longrightarrow H}$	$4.8 \times 10^{-12} \times (\frac{250}{T_e})^{0.7}$
	Recombination	$\mathrm{He}^+ + \mathrm{e}^- \longrightarrow \mathrm{He}$	$4.8 \times 10^{-12} \times (\frac{250}{T_e})^{0.7}$
	Ion atom interchange	$N^{+} + O_{2} \longrightarrow NO^{+} + O$ $N^{+} + O_{2} \longrightarrow O_{2}^{+} + N$ $N^{+} + O_{2} \longrightarrow O^{+} + NO$	$\begin{array}{c} 3.07 \times 10^{-10} \\ 2.32 \times 10^{-10} \\ 4.6 \times 10^{-11} \end{array}$
	Charge exchange	$N^+ + NO \longrightarrow NO^+ + N$	2×10^{-11}
	Charge exchange	$N^+ + O \longrightarrow N + O^+$	2.2×10^{-12}
	Charge exchange	$N^+ + H \longrightarrow N + H^+$	3.6×10^{-12}
INEW	Charge exchange	$N_2^+ + N \longrightarrow N^+ + N_2$	10^{-11}
sources 7iPWOM	Charge exchange	$N_2^+ + NO \longrightarrow NO^+ + N_2$	4.1×10^{-10}
$H^+, He^+, N^+, O^+,$	Ion atom interchange	$N_2^+ + O \longrightarrow NO^+ + N$ $N_2^+ + O \longrightarrow O^+ + N_2$	$\begin{array}{c} 1.3 \times 10^{-10} \\ 1.0 \times 10^{-11} \end{array}$
$\sum N + NO + O + $	Charge exchange	$N_2^+ + O_2 \longrightarrow O_2^+ + N_2$	5×10^{-11}
\mathbb{N}_2 , \mathbb{N}_2	Charge Exchange	$O^+ + NO \longrightarrow NO^+ + O$	8.0×10^{-13}
	Recombination	$N^+ + e^- \longrightarrow N$	$3.6 \times 10^{-12} \times (\frac{250}{T_e})^{0.7}$
	Dissociation	${\rm N_2}^+ + {\rm e}^- \longrightarrow {\rm N} + {\rm N}$	$2.2 \times 10^{-7} \times (\frac{300}{T_e})^{0.39}$
	Dissociation	$NO^+ + e^- \longrightarrow N + O$	$4.0 \times 10^{-7} \times (\frac{300}{T_e})^{0.5}$
11	Dissociation	${\rm O_2}^+ + {\rm e}^- \longrightarrow {\rm O} + {\rm O}$	$2.4 imes 10^{-7} imes (rac{300}{T_e})^{0.7}$

Presence of N⁺ and molecular species leads to :

- A significant increase (~1 an order of magnitude) in He⁺ density.
- H⁺ solution improves as compared with measurements
- O⁺ density profile better matches the data, and the density is a factor 2 larger.
- N⁺ profile matches observations
- All species show an increase in temperature/energy.

Solar Maximum Winter Noon

- A significant increase (~2 orders of magnitude) in He⁺ density.
- H⁺ solution improves as compared with measurements
- O⁺ density profile better matches the data, and the density is a factor ~5 larger.
- N⁺ profile matches observations
- All species show an increase in temperature/energy.

Nightside Seasonal Variation

What causes these differences?

What causes these differences?

Ions	Chemical Equilibrium Number Density		
(1/cc)	3iPWOM	7iPWOM	
O+	1.17E05	<mark>4.86E04</mark>	\bigcirc O ⁺ decreases
H+	3.60E-02	7.54E-01	by 43%
He ⁺	1 1/E-01	1 12E-02	
N ⁺ Che	mical scheme mi	ight explain	
N ₂ ⁺ the	_		
NO ⁺		6.2E04	
O_2^+		9.7E03	density
Total number density	1.17E05	<mark>1.21E05</mark>	doesn't really

Summary

- We developed the 7iPWOM model to include the behavior of H⁺, He⁺, N⁺, O⁺, N₂⁺, NO⁺, O₂⁺ in ionospheric outflow, using advanced schemes for photoionization calculation, chemical reactions, etc.
- The data-model comparison shows that including N⁺ in the polar wind improves the outflow solution when compared with observations.
- The 7iPWOM model suggests that heavy ions undergo large seasonal variations, and hints to the importance of N⁺ in the polar ionosphere from 200 – 1200 km.
- The presence of N⁺ in the polar wind influences the transport and acceleration of other species, by altering their overall abundance temperature.