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[1]- Toprak, E.; Mokni, N.; Olivella, S.: Pintado, X.: Thermo-Hydro-Mechanical Modelling of Buffer. Synthesis Report. August 2013

We would like to provide:

Generalized Solution
are parametric problem

THM 

problems

Proper Generalized Decomposition 

(PGD) is a Reduced Order Method (ROM) 

which is able to provide such a solutions



Heat Conservation

Fluid mass Conservation

Mechanical Equilibrium
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𝑐𝑝
∗ ሶT − 𝛁T 𝜅𝛁T = q

−𝛁T 𝐾𝛁p + 𝛼𝛁 ሶ𝐮 + 𝜉1 +
𝜉2
E

ሶp − 𝜉3 ሶT = 0

−𝛁T 𝐂𝛁𝐮 + 𝛼𝛁p + 𝜉4E𝛁T = 𝐛

2/20[2]- Selvadurai, A. P.S; Suvorov, A. P.: Thermo-Poroelasticity and Geomechanics. CAMBRIDGNE UNIVERSITY PRESS, 2017.
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• 𝛀𝐑 → Rock 

• 𝛀𝐁𝐟 → Backfill

• 𝛀𝐁 → Bentonite
• 𝛀𝐂 → Canister

• Axisymmetric Rotational Framework

• Water saturation assumed

• Linear Elastic
• Ω = ΩB ∪ ΩBf ∪ ΩB ∪ ΩC

Unknowns are T, p and 𝐮



Heat

Conservation
𝐌t

ሶT + 𝐊tT = fq

Fluid mass

Conservation
−𝐌pt

ሶT + 𝐊p p + 𝐆pd ሶ𝐮 = 0

𝐆dtT + 𝐆dp p + 𝐊d𝐮 = 𝐟𝐛 + 𝐟𝐭𝐫
Mechanical

Equilibrium

Spatially descritized system

Time Discretization:

ሶ𝐠 = 𝒇 𝐠, 𝒕 →
𝐠𝒊+𝟏 − 𝐠𝒊

∆𝒕
= 𝟏 − 𝜽 𝒇𝒊 + 𝜽𝒇𝒊+𝟏
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Monolothic Solver



Heat Conservation 𝑐𝑝
∗ ሶT − 𝛁T 𝜅𝛁T = q

Mechanical Equilibrium −𝛁T 𝐂 E, 𝜐 𝛁𝐮 + 𝛼𝛁p + 𝜉4E𝛁T = 𝐛

−𝛁T 𝐾𝛁p + 𝛼𝛁 ሶ𝐮 + 𝜉1 +
𝜉2
E

ሶp − 𝜉3 ሶT = 0Fluid mass Conservation

Three Material Parameters 

are considered uncertain

• 𝜅(Heat Conductivty)

• 𝐾(Hydraulic Conductivity)

• 𝐸 (Elastic Modulus) 

Unknowns depend on 

material parameters T 𝑡, Ω, 𝜅, 𝐾, E , p 𝑡, Ω, 𝜅, 𝐾, E and 𝐮 𝑡, Ω, 𝜅, 𝐾, E
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Geometric 

parameter 𝝑
required distance 

between canisters

Unknowns also depend 

on geometric parameter T 𝑡, Ω, 𝜅, 𝐾, E, , p 𝑡, Ω, 𝜅, 𝐾, E, and 𝐮 𝑡, Ω, 𝜅, 𝐾, E,
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T 𝑡, Ω, 𝜅, 𝐾, E, , p 𝑡, Ω, 𝜅, 𝐾, E, and 𝐮 𝑡, Ω, 𝜅, 𝐾, E,

𝐔 𝑡, Ω, 𝜅, 𝐾, E, =

T 𝑡, 𝝁

p 𝑡, 𝝁

𝐮 𝒕, 𝝁

• U is six dimensional which is called high dimensional.

• Models defined in high-dimensional suffer from the so-

called curse of dimensionality.

[3]- Chinesta, F.; Keunings, R.; Leygue, A.: The Proper Generalized Decomposition for Advanced Numerical Simulation. 
Springer, 2014. 

• By using a standard mesh-based discretization technique, here Finite Element Method (FEM), 

wherein 𝐧𝒕, 𝐧𝛀, 𝐧𝜿, 𝐧𝐊, 𝐧𝐄 and 𝐧𝝑 are number of discretization for each dimension, the number of 

degrees of freedom for Generalized solution is:

𝐧𝐅𝐮𝐥𝐥 = 𝐧𝒕×𝐧𝛀×𝐧𝜿×𝐧𝐊×𝐧𝐄

• FEM technique can become prohibitive with the repetitive solutions of PDEs

• In this work, Encapsulated PGD technique has been used to tackle this difficulty, with this 

technique the number of degrees of freedom for Generalized solution decreased to:

𝐧𝐏𝐆𝐃 = 𝐧𝒕×(𝐧𝛀+𝐧𝜿+𝐧𝐊+𝐧𝐄)
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7/20[4]- Diez, P.; Zlotnik, S.; Garcia-Gozalez, A.; Huerta, A.: Algebraic PGD for tensor separation and compression: An algoritmic 
approach. In: Comptes Rendus Mecanique 346 (2018), p. 501-514

• We seek a Generalized solution for Ω, 𝜅, 𝐾, E, 𝜗 ∈ 𝛺 × 𝐼𝜅 × 𝐼𝐾 × 𝐼E × 𝐼𝜗 in each time step 𝑡. 
• The PGD yields an approximate solution in the separate form for each time step:  

𝐔𝐏𝐆𝐃
𝒕 Ω, 𝜅, 𝐾, E, 𝜗 = 

𝑚=1

𝑀

𝐮𝑚 Ω 𝐺1
𝑚 𝜅 𝐺2

𝑚 𝐾 𝐺3
𝑚 E 𝐺4

𝑚 𝜗

• PGD contains two inner loops for computing enough terms (𝑀) to approximate the 

Generalized solution

• Enrichment loop (to compute successively terms of the solution)

• Fixed-point iteration (to compute iteratively the modes in each term
• By using PGD method, the Stiffness Matrix and Force Vectors will be defined in separated 

formats (Monolothic Solver), and they are the main contribution of this work.

𝐊𝐏𝐆𝐃
𝒕 Ω, 𝜅, 𝐾, E, 𝜗 = 

ෝ𝑚=1

𝑀𝜙

𝐊 ෝ𝑚 Ω 𝜙1
ෝ𝑚(𝜅)𝜙2

ෝ𝑚(𝐾)𝜙3
ෝ𝑚(E)𝜙3

ෝ𝑚(𝜗)

𝐅𝐏𝐆𝐃
𝒕 Ω, 𝜅, 𝐾, E, 𝜗 == 

𝑚=1

𝑀𝜓

𝐟 𝑚 Ω 𝜓1
𝑚(𝜅)𝜓2

𝑚(𝐾)𝜓3
𝑚(E)𝜓4

𝑚(𝜗)
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Input Data:
Parametric Matrices and Parametric Vectors

Required in a Separated form

E
n

c
a

p
su

la
te

d
 P

G
D

Output Data:
Unknown vectors

Required in a Separated form

Enrichment Loop

𝜂tol (Modes Tolerance) 

Fixed-point iteration

𝜖tol
(Tolerance for Fixed point iteration )
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• Domains

• Geometrical parameter

ϑ = [-5 m   6m]

• Material parameter is Heat conductivity of the Rock (𝜅R = 𝜇𝜅)

𝜇𝜅= [1
W

m °K
3

W

m °K
]

• Time domain

𝑡= [0 𝑦𝑒𝑎𝑟 1000 𝑦𝑒𝑎𝑟]

First Example, Thermal Transient with Geometric and Material parameter.



Encapsulated PGD vs FEM Solution for one point

𝜇𝜅 = 2.61
W

m °K
,𝜗 = 6 m
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PGD Solution FEM Solution Relative Error



𝜖Ω 𝜇𝜅 , 𝜗 =
TFEM−TPGD Ω

TFEM Ω

Ω → Space
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Global Error

𝜖G =
UFEM−UPGD Ω×𝐼𝜅R×𝐼𝜗

UFEM Ω×𝐼𝜅R×𝐼𝜗

Ω → Space
𝐼𝜅R ∈ 1,3

𝐼𝜗∈ −5,6
𝐼𝑡∈ 1,1000

Based on following data:
• 𝝑 = −𝟓: 𝟔
• 𝜿𝐑 = 𝟏: 𝟎. 𝟐𝟓: 𝟑
• 𝒕 = 𝟏: 𝟏𝟎𝟎𝟎
• 𝐌𝐨𝐝𝐞𝐬 = 𝟏: 𝟐𝟎



Second Example, THM Steady State case with Geometric and Material parameters.

• Domains

• Geometrical parameter: 

• Material parameter:

Three Material Parameters

• Heat Conductivity of the Rock 𝝁𝟏
• Hydraulic Conductivity of the Rock 𝝁𝟐
• Elastic Modulus of the Rock 𝝁𝟑

13/20

Geometric Parameter

• required distance between canisters 𝜗
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Encapsulated PGD vs FEM for one point

𝜇1 = 2.61
W

m °K
,𝜇2 = 1.52 × 10−12

m

s
and 𝜇3 = 65000 MPa and 𝜗 = −5 m

Number
of Modes

200
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Encapsulated PGD vs FEM for one point

𝜇1 = 2.61
W
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,𝜇2 = 1.52 × 10−12

m

s
and 𝜇3 = 65000 MPa and 𝜗 = −5 m

Number
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𝜖Ω 𝜇3 =
UFEM−UPGD Ω

UFEM Ω

Ω → Space
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Global Error

𝜖G =
UFEM−UPGD Ω×𝐼𝜇1×𝐼𝜇2×𝐼𝜇3×𝐼𝜗

UFEM Ω×𝐼𝜇1×𝐼𝜇2×𝐼𝜇3×𝐼𝜗

Ω → Space
𝐼𝜇1 ∈ 1,3

𝐼𝜇2 ∈ 2 × 10−13, 1.02 × 10−11

𝐼𝜇3 ∈ 5.5 × 1010, 7.5 × 1010

𝐼𝜗∈ −5,6

Based on following data:
• 𝝑 = [−𝟓,−𝟐. 𝟖𝟎𝟖𝟖,−𝟎. 𝟔𝟎𝟔𝟔, 𝟏. 𝟓𝟗𝟓𝟔, 𝟑. 𝟕𝟗𝟕𝟖, 𝟔]
• 𝝁𝟏 = 𝟏, 𝟏. 𝟒𝟗𝟕𝟓, 𝟏. 𝟗𝟗𝟕𝟓, 𝟐. 𝟒𝟗𝟕𝟓, 𝟑
• 𝝁𝟐 = 𝟎. 𝟎𝟎𝟐, 𝟎. 𝟎𝟐𝟏𝟗, 𝟎. 𝟎𝟒𝟏𝟗, 𝟎. 𝟎𝟔𝟏𝟗, 𝟎. 𝟎𝟖𝟏𝟗, 𝟎. 𝟏𝟎𝟐𝟎 × 𝟏𝟎−𝟏𝟎

• 𝝁𝟑 = 𝟓. 𝟓, 𝟓. 𝟗𝟗𝟕𝟓, 𝟔. 𝟒𝟗𝟕𝟓, 𝟔. 𝟗𝟗𝟕𝟓, 𝟕. 𝟓 × 𝟏𝟎𝟏𝟎

• 𝐌𝐨𝐝𝐞𝐬 = 𝟐𝟓, 𝟓𝟎, 𝟕𝟓, 𝟏𝟎𝟎, 𝟏𝟐𝟓, 𝟏𝟓𝟎, 𝟏𝟕𝟓, 𝟏𝟖𝟎, 𝟐𝟎𝟎
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• It has shown that PGD is numerical method able to provide generalized solutions of parametric 

problems.

• For finding Generalized Solution for such problems, PGD solver is much faster in comparison with FEM 

solver

• This presentation shows how ROM can provide real time solution to (simple) THM problems.

Conclusion

• Final goal is finding Generalized Solution for Transient THM problem with both Geometric and Material 

Parameters.

Outlook




