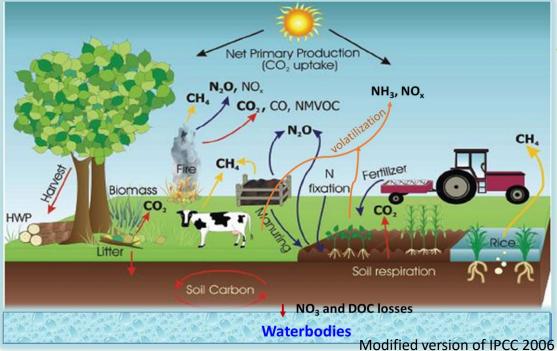
Simulation of long-term changes in SOC and N₂O emissions from permanent grass silage using the DNDC model

M. I. Khalil and B. A. Osborne

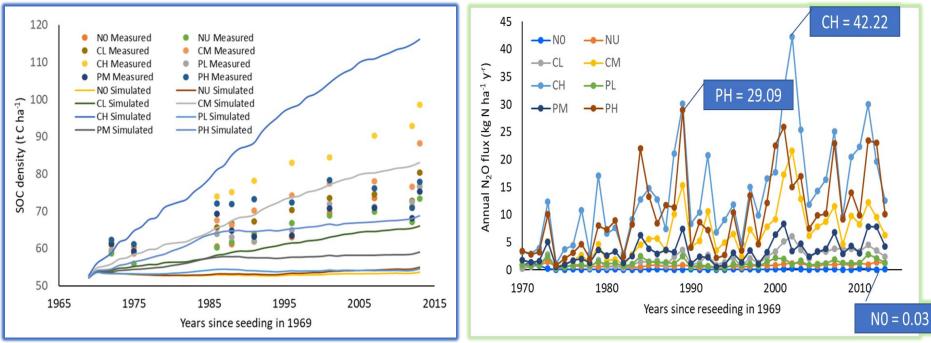
UCD School of Biology and Environmental Science UCD Earth Institute



UCD School of Biology and Environmental Science UCD Earth Institute

Biogeochemistry of C & N Cycles: SOC storage and GHG emissions

- Quantification and reporting of SOCρ changes and N₂O emissions from agricultural soils remain a key challenge.
- The main constraints are: (i) short-term measurements,
 (ii) limited measured data and (iii) inadequate area coverage.
- Model can provide largescale land use and management coverage whilst minimizing spatial and temporal variability.



UCD School of Biology and Environmental Science UCD Earth Institute

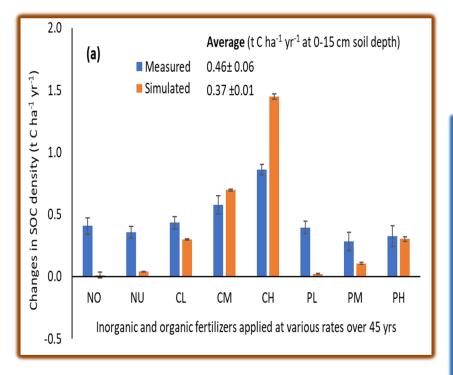
PRUDENCE COLLEGE DUBLIN

Treats: Unfertilized control (N0)

- NPK @ 200 kg N (as urea); 32 kg P, and 160 kg K, ha⁻¹ yr⁻¹ (NU)
- Pig slurry (m³ ha⁻¹ yr⁻¹): low (PL) = 50; medium (PM) = 100 & high (PH) = 200
- Cattle slurry at the same rate: CL, CM and CH.

Measured & simulated SOCp at 0-15 depth under grass silage treated with inorganic & organic fertilizers over 45 years.

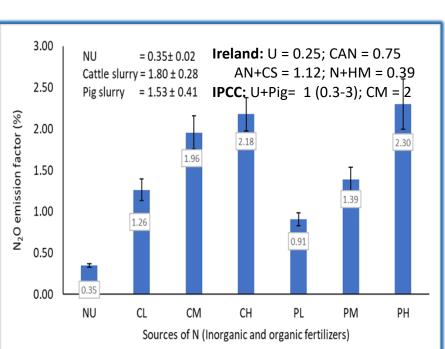
> European Geosciences Union


Ť.

CC

Simulated annual N₂O flux under grass silage treated with inorganic & organic fertilizers over 45 years.

UCD School of Biology and Environmental Science UCD Earth Institute


Measured and simulated changes in SOCp at the 0-15 soil depth under grass silage over 45 years.

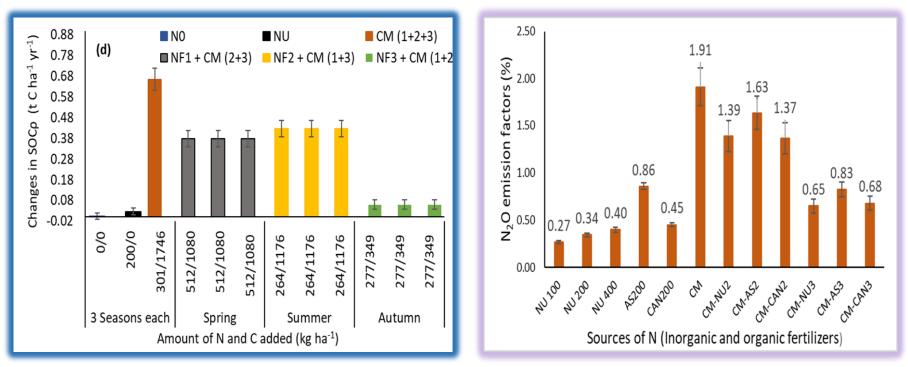
> European Geosciences Union

1

BY

CC

Simulated N₂O emission factors under grass silage over 45 years.


(i)

BY

(CC)

UCD School of Biology and Environmental Science UCD Earth Institute

Sensitivity of DNDC95 for changes in SOC ρ and N₂O EFs (%) of a permanent grassland to inorganic and organic N fertilizers.

NU2/AS2/CAN2 = $1/3^{rd}$ of Urea, ammonium sulphate (AS) and calcium ammonium nitrate (CAN) applied by replacing the 2^{nd} split of cattle slurry. NU3/AS3/CAN3 = Similarly the 3^{rd} split.

EGU European General Assembly: 4-8 May 2020 (BG3.9_EGU online)

Conclusions

- A new SOC equilibrium had not been reached in these grassland soils after ~45 years.
- The DNDC95 could respond well to soils, climate and management practices on Δ SOC ρ and N₂O EFs, comparable to measured values.
- Strategic replacement of slurry either at the 2^{nd} or 3rd silage cuts by 1/3 decreased N₂O-EFs significantly while sequestering SOC at a smaller rate.
- The DNDC95 could provide an accurate representation of the key drivers affecting both SOC ρ and N₂O fluxes in temperate grass silage.

