

SSS10.5

Effects of long-term field experiment on early stage litter decomposition in Austria and Sweden

Maria Regina Gmach, Martin A. Bolinder, Lorenzo Menichetti, Thomas Kätterer, Taru Sandén

Introduction and objectives

Soil organic matter decomposition affects the local and global C cycles. This study tested the effect of land use and management, litter type, and climate on the early decomposition rates and stabilization in long-term field experiments (LTEs) in Austria and Sweden.

Material and methods

Rooibos and Green tea bags (Lipton, Fig.1) were used according to the Tea Bag Index (TBI) protocol for comparison of decomposition rate (k) and stabilization factor (S) after ~90 days.

- 16 sites in Austria (2015 and 2016): focused on organic and N fertilization, crop residues management, and tillage systems.
- 13 sites in Sweden (2016): focused on annual and perennial crops rotation, organic and mineral fertilization, and tillage systems.

Sweden			Austria			
Site	Place	Exper	Site	Place	Exper	Year
SE1	Börgeby	CMP	AT1	Mubil	CB	2014
SE2	Ekebo	CMP	AT2	Mubil	CB	2015
SE3	Högasa	CMP	AT3	Ritzlhof	CB	2015
SE4	Kungsängen	CMP	AT4	Rottenhaus	CB	2016
SE5	Röbacksdalen	CMP	AT5	Rutzendorf	CB	2015
SE6	Vreta Kloster	CMP	AT6	Rutzendorf	CB	2016
SE7	Lanna	ROT	AT7	Breitstetten	SF	2015
SE8	Lönnstorp	ROT	AT8	Breitstetten	SF	2016
SE9	Röbacksdalen	ROT	AT9	Fuchsenbigl	SF	2016
SE10	Säby	ROT	AT10	Haringsee	SF	2015
SE11	Lanna	TS	AT11	Haringsee	SF	2016
SE12	Säby	TS	AT12	Rottenhaus	SF	2016
SE13	Ultuna	TS	AT13	Zinsenhof	SF	2016
			AT14	Zissersdorf	SF	2016
			AT15	Fuchsenbigl	TS	2015
		<u> </u>	AT16	Fuchsenbigl	TS	2016

Calculating TBI

Initial decomposition rate (k): $W_r(t) = a_r e^{-kt} + (1-a_r)$

Stabilization factor (S): $S = 1 - a_a / H_a$

Where: $a_r = H_r(1-S)$

a_r: decomposable fraction of RT a_g : decomposable fraction of GT H_g : hydrolysabe fraction of GT

 $H_r^{"}$ hydrolysabe fraction of RT

Preliminary results

In Austria. decomposition differed more between sites than between treatments. Minimum tillage had higher decomposition rates compared to conventional tillage.

In Sweden, ploughing tillage tended to result in the lowest k. The northernmost site resulted in the highest k value. Results indicated higher stabilization in perennial forage compared to annual crops.

S and k showed differences among sites and treatments (Fig. 2). In Austria were quite different at the same sites for 2015 and 2016, likely because differences in weather conditions.

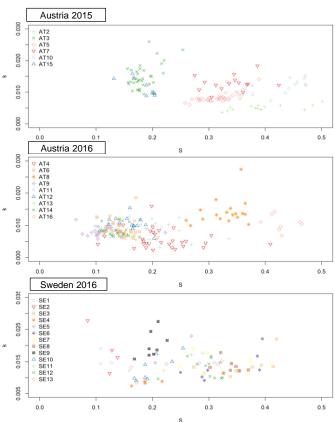


Fig.2: S and k parameters in Austria 2015, 2016, and Sweden 2016

