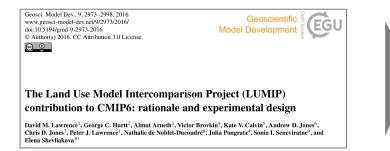
Model intercomparison of idealized global deforestation experiments

Lena Boysen¹ / Victor Brovkin^{1,2} / Julia Pongratz^{1,3} / Nicolas Vuichard, Philippe Peylin⁴ / Dave Lawrence⁵ / Spencer Liddicoat⁶ / Tomohiro Hajima⁷ / Vivek Arora⁸ / Matthias Rocher, Christine Delire⁹ / Yanwu Zhang¹⁰ / Lars Nieradzik¹¹ / Peter Anthoni¹² / Min-Hui Lo¹³ / Marysa Laguë¹⁴ / Deborah Lawrence¹⁵ / Wim Thiery¹⁶

MPI for Meteorology, Germany; 2) CEN, University of Hamburg, Germany; 3) University of Munich, Germany;
 4) LSCE – IPSL, France; 5) NCAR/UCAR, USA; 6) Hadley Center, UK; 7) JAMSTEC, Japan; 8) CCCMA, Canada; 9) CNRM, France; 10) BCC, China; 11) University of Lund, Sweden; 12) KIT, Germany; 13) NTU, Taiwan; 14) Berkeley University, USA; 15) University of Virginia, USA; 16) Vrije Universiteit Brussel, Belgium



Max-Planck-Institut für Meteorologie

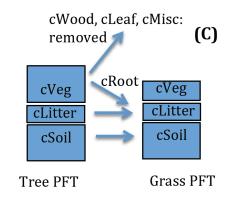
An idealized global deforestation experiment

Experimental set up:

- Branching off PI-control; coupled land-atmosphere-ocean; CO₂ and land-use fixed in 1850
- 20 million km² of forest linearly removed over 50 years (historically: ~10 mio km²)
- Only from 30% most forested grid cells (→ same pattern across models)
- Replacement by natural grass land; removal of aboveground carbon
- Dynamic vegetation switched off
- At least 30 years of stabilization $\rightarrow \ge 80$ yrs

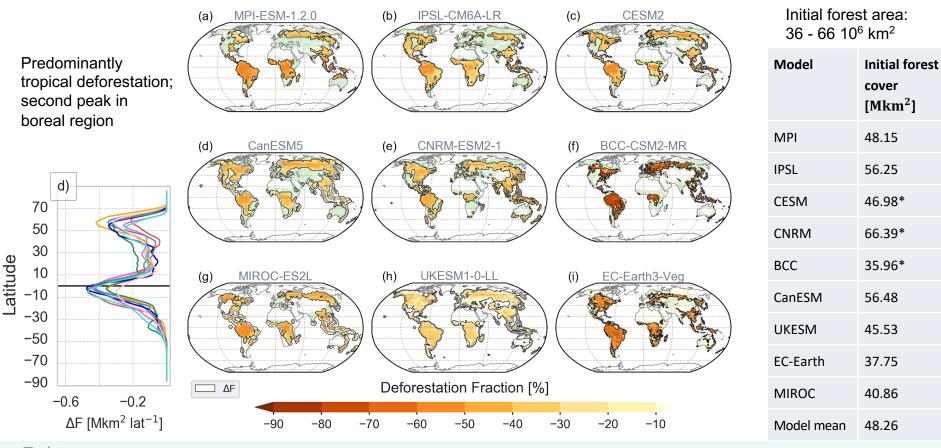
2.2.1 Global deforestation (*deforest-glob*, GCM, Tier 1, 80 years)

Description: Idealized deforestation experiment in which 20 million km^2 of forest area (covered by trees) is converted to natural grassland over a period of 50 years with a linear rate of $400\,000\,\text{km}^2\,\text{year}^{-1}$, followed by 30 years of constant forest cover (Fig. 2a). This simulation should



Novelty

- Straightforward implementation
 - → comparability of models
- Robust detection: strong deforestation signal (> historical or RCP)
 - → Similar to 1%/yr CO_2 experiments
- Transient simulations
 - → signal over time
- Biogeophysical and carbon cycle effects in one run



Model	MPI- ESM1.2-LR	IPSL- CM6A-LR		BCC- CSM2-MR		CanESM5	MIROC- ES2L	EC-Earth3- Veg	UKESM1- 0-LL
years	150	80	80	80	80	90	150	80	80
realizations	7	3	3	1	1	1	1	1	1

Deforested fraction

Max-Planck-Institut für Meteorologie

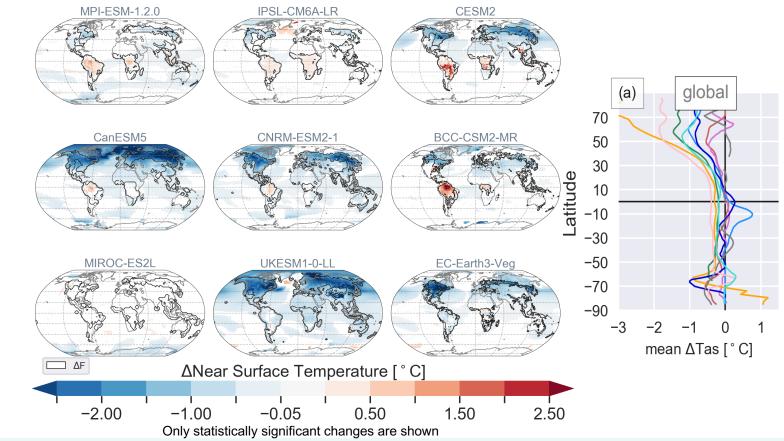
4

Boysen et al, Biogeosciences, tbs

 $(\mathbf{\hat{I}})$

BΥ

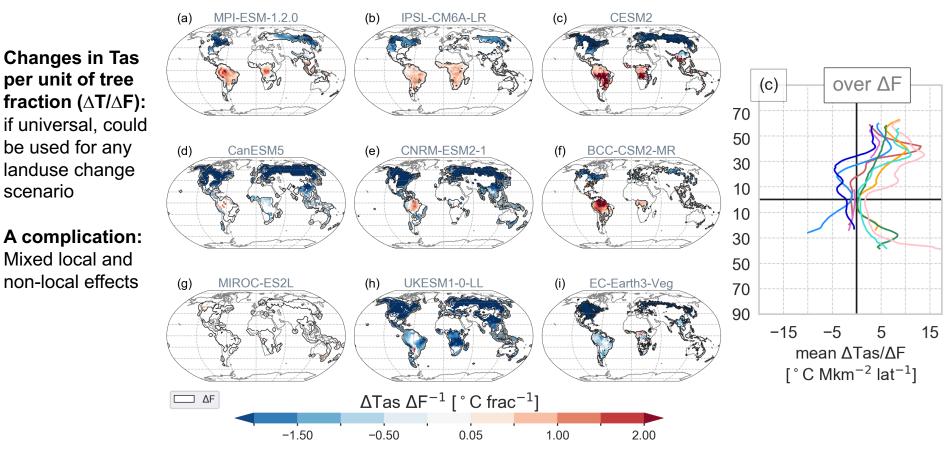
(cc)


Temperature response to deforestation (last 30 years)

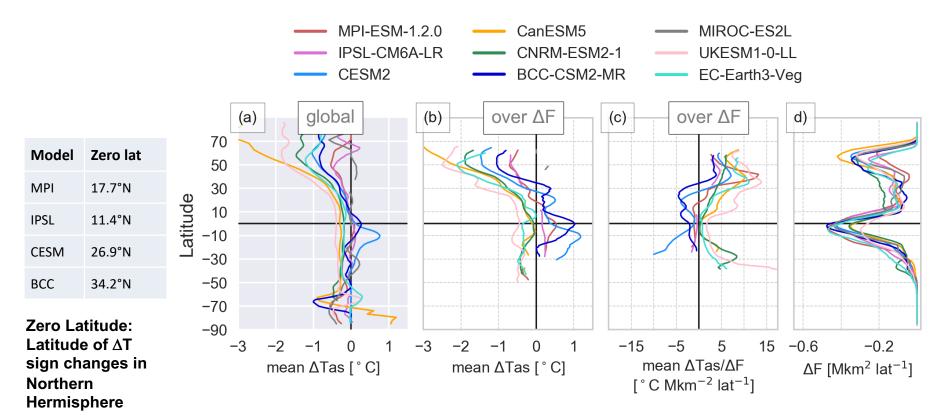
Generally, no surprises:

- Extratropical cooling due to albedo increase
- Tropical warming due to a reduction in evapotranspiraion

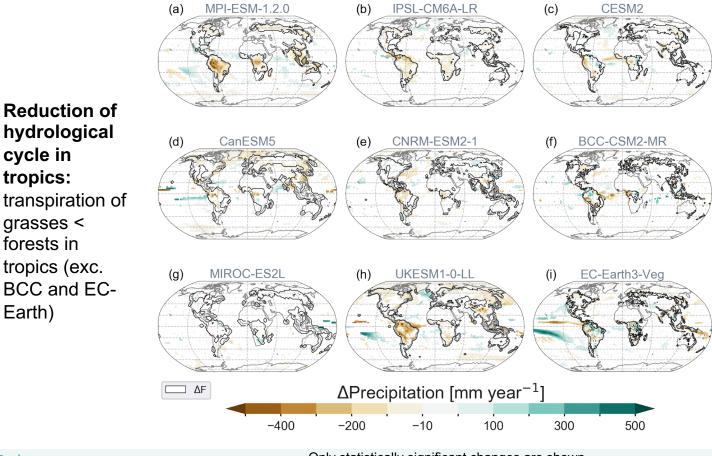
Unexpected:


cooling in UKESM and EC-Earth, also over land in tropics

Max-Planck-Institut für Meteorologie


Temperature sensitivity to deforestation: $\Delta T / \Delta F$

Max-Planck-Institut für Meteorologie


Zonal changes in temperature & zero latitude

7

Precipitation response to deforestation

Max-Planck-Institut für Meteorologie

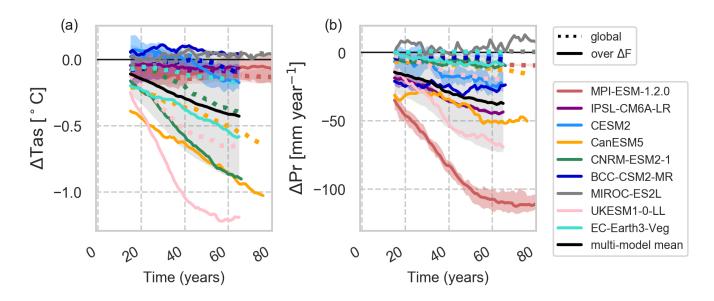
Reduction of hydrological

cycle in tropics:

grasses < forests in

Earth)

tropics (exc.

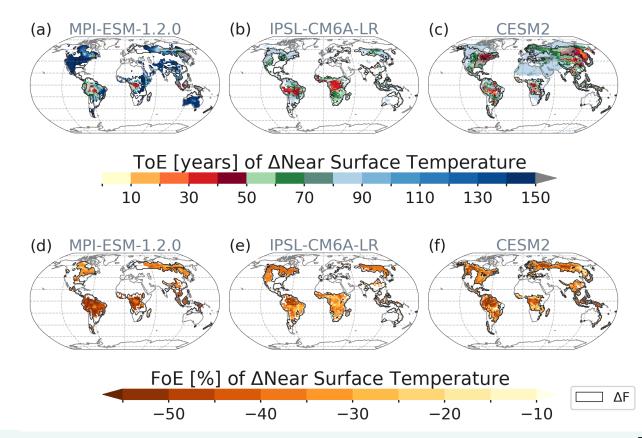

BCC and EC-

Only statistically significant changes are shown

8

Biogeophysical effects in time (30-yr mov. average)

Different amplitude of cooling response, linear trend

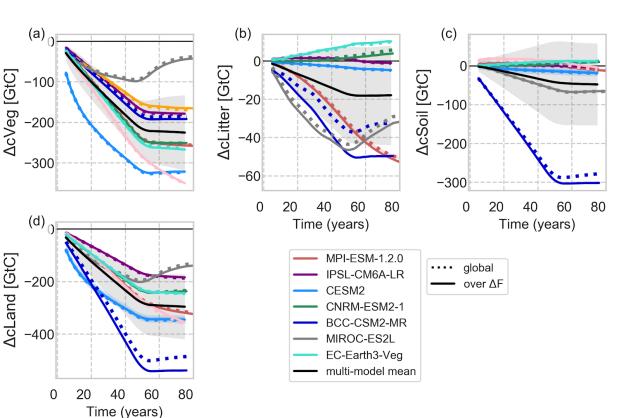


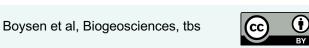
When do changes emerge (ensemble mode)?

Time/fraction of emergence: When is the signal > noise?

(mean of trends) > $(1 \sigma \text{ of trends})$

- "Time of emergence": within 50 years over the strongly deforested tropical regions
- The signal propagates from the centre of deforestation to the edges
- The "fraction of emergence" is more similar among the models than the "time of emergence"

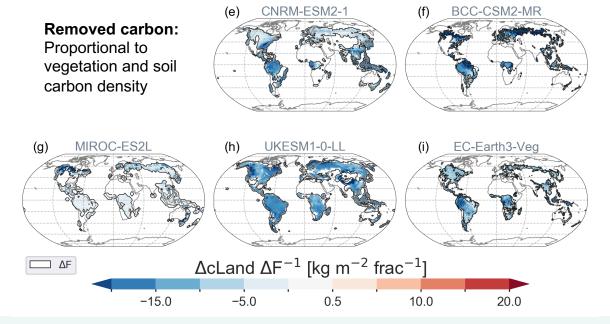



Carbon cycle response

 MPI: continued decline due to changed litter input

- IPSL: almost only governed by cVeg
- CESM: stabilization due to productive grasses
- CNRM: Soil C increase
- BCC: strongest C
 decrease
- multi-model mean of land carbon decrese:

274±113 PgC



Relative changes in carbon density

Summary & Conclusions

- The pre-industrial forest area ranges between 36 and 66 million km² with multi-model mean of 48.3±9.9 million km², close to historical reconstructions
- Most of the deforested area is in tropics, with a second peak in the boreal region. The effect on global annual near-surface temperature ranges from no significant change to a cooling by 0.55°C, with multi-model mean of -0.22±0.21°C
- Four models simulate temperature increase over deforested land in tropics and a cooling over deforested boreal land. In these models, the latitude of changing the sign of temperature response ranges from 11 to 34°N, with a multi-model mean of 23°N
- For those models that provided several ensemble members (MPI, IPSL and CESM2), the near-surface temperature changes emerge within 50 years over the tropical regions of strongest deforestation. The signal propagates from the centre of deforestation to the edges, indicating the influence of non-local effects
- The biogeochemical effect of multi-model mean of land carbon reduction by 274±113 PgC calculated offline would be a warming by 0.52±0.22°C, suggesting that the net effect of deforestation is a warming
- Sensitivities such as ΔT/ΔF, ΔcLand/ΔF in idealized runs could be compared with variable landuse scenarios in the CMIP6 runs, providing a basis for understanding "realistic" CMIP6 simulations

