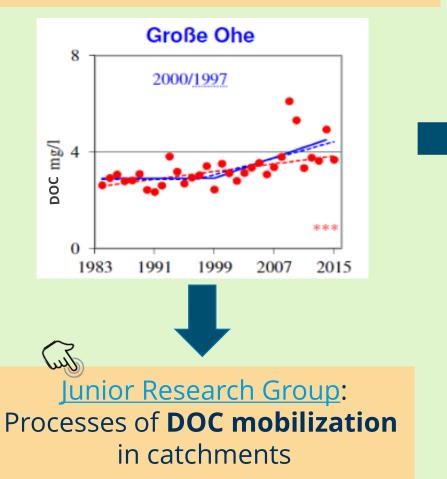


EGU 2020 - Session Isotopes and Tracers

Hydrological analysis of runoff formation in a small forested mountain catchments using $\delta^2 H$ and $\delta^{18} O$ ratios


Lisa Rommel, Dr. Thomas Wöhling TU Dresden

Motivation: Model development for hydrological DOC*-mobilization

Rising DOC trends in surface waters

Export of DOC mainly through hydrological pathways

of
hydrological
model
for DOCexport from
catchments

Field campaign

collection of field data (discharge, groundwater table, soil moisture, T, EC, Water Sampling, soil analyses)

Process analysis

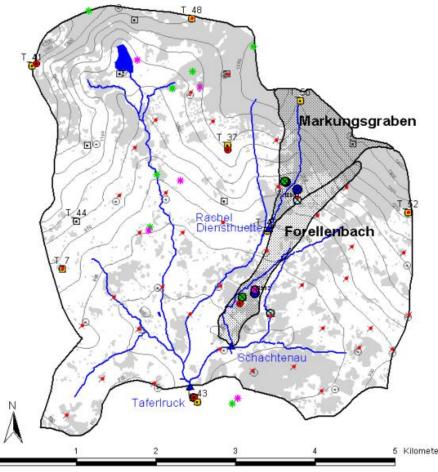
identification of runoff formation with multiple natural tracers (i.a. $\delta^2 H$, $\delta^{18} O$), water origin, pathways, mobilization areas, retention times

small scale modeling (hill slope)

small scale runoff formation, preferential flow paths

conceptual modeling (subcatchment and catchment)

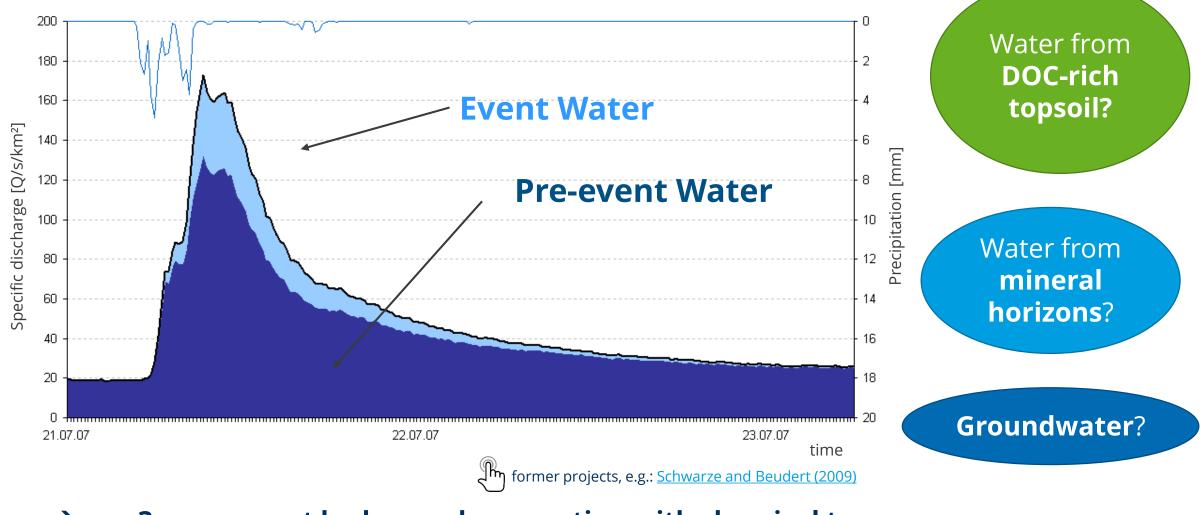
upscaling steps, identification of dominant processes, development of scalable hydrological runoff model with implementation of DOC-export


Study area: catchment "Große Ohe"

- Located in Bavarian Forest National Park
- Head catchment with several subcatchments
- Very few anthropogenical influences
- Dense measuring network
- Long term data series

www.nationalpark-bayerischer-wald.bayern.de

Analysis of runoff formation with environmental tracers


in precipitation, discharge, soil water, ground water Discharge Q Analysis of concentration gradients in Groundwater table h streams precipitation DOC Fe²⁺ Q d²H, d¹⁸O Mnⁿ⁺ Aln+ d18O SiO₂ d²H **Analysis of isotopic signitures Surface runoff** -40 DOC d²H, d¹⁸O low water discharge precipitation Soil moisture DOC d^2H Soil tension Soil water Mnⁿ⁺ surface runoff d²H, d¹⁸O EC soil water CHARLEST PRINCES d2H, d18O -11 SiO, Groundwater $d^{18}O$ groundwater Hydrochemical fingerprint of water depending on areas of origin

Isotope based hydrograph separation

→ e.g. 3-component hydrograph separation with chemical tracers

Summary

- **Identification** of **dominant processes** in runoff formation on hill slope and on (sub-)catchment scale
- Flow paths, areas of origin and retention times in different hydrological compartments at different discharge conditions
- Development of hydrological forecast model with implementation of DOC-export from catchments
 - modelling with easily accesible data (generalization of concept)
 - transferable to similar catchments

Acknowledgement

We would like to thank the **GLASER Foundation** and the **PLETTNER Foundation** in the Stifterverband für die Deutsche Wissenschaft for financial support for the doctorate.

We would like to thank the **German Hydrological Society (DHG)** for financial support for the field campaign.

