The Eastern Romanche ridge-transform intersection (Equatorial
Atlantic): slow spreading under extreme low mantle
temperatures.

_Preliminary results of the SMARTIES cruise.
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Mid oceanic ridges: the building of new oceanic lithosphere
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The structure of the oceanic lithosphere at slow and ultra-
slow spreading rates is highly variable

At slow spreading rates: Mid-Atlantic Ridge
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At ultra-slow spreading rates: South West Indian Ridge

Large areas of mantle outcrops on the ocean floor exhumed
through detachment faults (Smooth seafloor morphology)
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It depends on the ratio between magmatic and tectonic

accomodation of the spreading (M)... |@ ® \
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Modified from Tucholke et al., 2008

If spreading is highly magmatic (M close to 1) then few large normal faults will form because
they will not be able to be active for long periods of time

If spreading is nearly amagmatic (M =0 or very close to it) then spreading will be nearly fully
tectonically accomodated and large normal faults will develop. In time, these fault surfaces will
be ruptured by other normal faults that may eventually take on the main spreading.



The role of transform faults on the structure of the oceanic

lithosphere

Transform faults, as ridge axial discontinuities contribute to lower the mantle temperature (cold
edge effect) and mduce asymmetrlc spreading and gabbro and peridotite exhumation
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Numerical models show the impact of the
transform fault on the passive flow structure
and on the mantle temperature and on the
percent of melt generated below the ridge
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o

asthenosphere

-~

Lithospheric mantle \ detachment

Modlﬁed from Ligi ef al., 2008 . cc

e B"a}sf“i*t+dykes
gabbro

Numerical model results for a 100
km long offset transform fault.
Degree of mantle melting (%) is
shown along the ridge axis and on
two across axis profiles at different
distances from the transform.
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The Equatorial Atlantic large offset transforms: a unique area
of the slow spreading Mid-Atlantic Ridge ‘ @ 0 \

50°W 40°W 30°'W 20°W 10°W

Sl N

. “t 5N

Why?

o

s, ’.,,»,..’_ N_ Y oc.
SOUTH AMERICA
* : : : - ; ‘ ; T ]
-7000 -5000 -4000 -3500 -3000 -2500 -2000 -1000 0 500 1000 4500 metres

Large offset (and often complex) transform faults: St. Paul, Romanche, Chain

Very deep ridge axis (below 4000 m)

High peridotite/basalt ratio (islets formed of deformed peridotite — St. Peter & Paul’s islets)
Estimated low melting rates from rock chemistry

Complex temporal evolution of the largest transform systems, such as St. Paul and Romanche

What are the effects of these large transform faults on the structure of the oceanic
lithosphere? Specifically, what could be the effect of the Romanche mega-transform?

A few studies on the Equatorial Atlantic: Bonatti, 1990; Bonatti et al., 1993; 1994; 1996; Schilling et al., 1995; Seyler and Bonatti, 1997; Hékinian et al., 2000;
Bonatti et al., 2001, Ligi et al., 2002; Ligi et al., 2008; Maia et al., 2016; Brunelli et al., 2019



The Romanche mega-transform fault and its Eastern
intersection with the Mid-Atlantic Ridge ‘@ @ ‘

The Romanche mega-transform fault is the largest of the Atlantic and possibly the largest active transform
fault in the oceans. It offsets the ridge axis for more than 900 km and corresponds to an age offset > 50 my.
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Previous cruises (e.g. Bonatti et al., 1994; 1996, Bonatti et al., 2001) revealed:

highly complex morphology of the tranform fault: lens-shaped slice of lithosphere, double fault...
ridge-transform intersection has a very anomalous morphology — oblique zones, heavily faulted surfaces

peridotites (and some gabbros) dredged over a large portion of the south flank of the transform (about
20 km-wide stretch)



The Romanche mega-transform fault and its Eastern
intersection with the Mid-Atlantic Ridge
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The Romanche mega-transform fault and its Eastern
intersection with the Mid-Atlantic Ridge: the SMARTIES cruise
(2019)

Objectives

- To understand and quantify the influence of a strong thermal gradient on the spreading
processes
- Origin of the particular topography of the Ridge-Transform Intersection;
- Origin of the alkali basalts previously sampled at the ridge axis;
- Links between axial obliquity and magma supply;
- Distribution and style of the axial volcanism and tectonics;
- Hydrothermal processes: distribution and style.
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The north wall of the South-Eastern Romanche

......

The section revealed a very magmatic cru
basaltic lava flows and a thick carbonate layer on top.
In the nodal basin, the north and south walls are

22 covered by a thick sediment layer and no clear outcrop
“was found. Samples recovered here are peridotites and

4 ,gabbros



Strong asymmetry between both walls of the transform
valley




The Ridge-Transform intersection area

Highly deformed mylonitized peridotites
e : Samples from the core of one structure
B ”* : No gabbros to be seen...

lo ng the southern wall of the Romanche, as well as the highly deformed area
to the East are fragments of OCCs (to the West) and a highly deformed OCC (to the East)



The axial area
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tubes

Very localized eruptive centers, some individ
volcanoes

Faults and fissures cut the lava flows

Flows overlay the faults
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From a near normal axial area to the South to a highly oblique domain nearing the transform
fault - Discontinuous and faulted neo-volcanic zone



The oblique axial area and the hydrotheral

Two old dredges: peridotites
Very high topography and an
active fault on the Northeast
flank

Strong obliquity

-1.000 m
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Small fluid vents: low temperature fluids, residual heat? Or
just from serpentinization?

Evidence of higher temperature deposits

Copper sulphides at the base of blocks




A few brief and very preliminary observations

There is clear evidence of an exceedingly low melt supply at the ridge axis south of the
Romanche transform fault:

v'  off axis reliefs are formed by deformed peridotites (i.e. mantle) and several ruptured
OCCs (different from the SWIR area...)

v' axial volcanic zone highly faulted and discontinuous, forming patches of localized
volcanic fields

v'  average depths are really... deep
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