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— only few “supersites” in the Arctic

Arctic clouds

one of the main components
driving the Arctic climate system
— key role in the radiation
budget

Longwave
cooling

. microphysical
sparse knowledge of cloud- processes?
radiation interactions and cloud

properties at high latitudes

L

macro- and microphysical
properties?

highly temporally and vertically

resolved cloud information from g
ground-based remote sensing

instruments important Longwave Shortwave
- cloud radar, ceilometer, warming cooling

microwave radiometer,

N radiative impact?
broadband radiation sensors




Cloud remote sensing at AWIPEV, Ny-Alesund (Svalbard)

m 94-GHz FMCW cloud radar (University of Cologne)

- vertical information on hydrometeors (cloud droplets,
ice, precipitation)

31 July 2016
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Ceilometer CL51 (Alfred Wegener Institute)
— detection of cloud droplets
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Sensor synergy: Cloudnet classification

Cloud radar Ceilometer Microwave radiometer
(U. Cologne) (AW1) (AWI)

T g

thermodynamic
information
(numerical weather

e Vi RS L.
‘ prediction model)

vertically resolved cloud
properties (At=30s, Az=20 m)

31 July 2016
-Target classiﬁcatljon

Aerosol & insects

Insects

&erosol

Melting ice & cloud droplets
Melting ice

Ice & supercooled droplets
Ice

Drizzle/rain & cloud droplets
Drizzle or rain

Cloud droplets only

Clear sky
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« >2 years of cloud macro- and microphysical properties for Ny-Alesund
 operational retrieval, measurements ongoing
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Sensor synergy: liquid and ice water content

Monthly mean cloud characteristics at Ny-Alesund
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Sensor synergy + radiative transfer

Retrieved cloud properties

Thermodynamic profiles
Aerosol information
Surface properties
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Broadband Radiative Transfer Model (RTM)

]! OUTPUT i

Shortwave and longwave
flux and heating rate profiles

RTM difference is RTM
with cloud radiative ~ Wwithout
clouds clouds

effect and forcing



SFC CRE / Wm*

Surface cloud radiative effect (CRE) at Ny-Alesund

CRE= (F\I/'F/]\)all—sky_ (F\l/'F/]\)clear

positive =2 clouds warm the surface
negative = clouds cool the surface

monthly mean CRE
(error bars indicate variability of daily mean values)
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annual average net surface cloud
radiative effect
at Ny-Alesund for 2017: +11 Wm-2
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What is the relative contribution of liquid and ice to CRE?

e discrimination of cases with
e LWP>5gm? - liquid“ clouds

e IWP>0gm?, LWP<5gm? - ,ice”clouds
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What is the relative contribution of liquid and ice to CRE?

”Ilqwd” clouds dominate S|gnal
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Impact of clouds on atmospheric heating rates (HR)
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Closer look on heating rate profiles

Differentiation between cloud types (single-/multi-layer, liquid, ice, mixed-
phase)

Do we have characteristic heating rates for certain cloud types?
- Comparison to observed heating rates at other Arctic sites

Continuation of cloud observations and the analysis of radiative impact at
Ny-Alesund
— year-to-year variability




