ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)³

Impact of clouds on radiative fluxes and atmospheric heating rates at Ny-Ålesund, Svalbard

Kerstin Ebell¹, Tatiana Nomokonova¹, Marion Maturilli², Christoph Ritter²

 Institute for Geophysics and Meteorology, University of Cologne, Germany
 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany

Arctic clouds

- one of the main components driving the Arctic climate system
 → key role in the radiation budget
- sparse knowledge of cloudradiation interactions and cloud properties at high latitudes
- highly temporally and vertically resolved cloud information from ground-based remote sensing instruments important
 → cloud radar, ceilometer, microwave radiometer, broadband radiation sensors
- ightarrow only few "supersites" in the Arctic

Cloud remote sensing at AWIPEV, Ny-Ålesund (Svalbard)

since June 2016

94-GHz FMCW cloud radar (University of Cologne)
→ vertical information on hydrometeors (cloud droplets, ice, precipitation)

Ceilometer CL51 (Alfred Wegener Institute) → detection of cloud droplets

Sensor synergy: Cloudnet classification

Cloudnet (Illingworth et al., 2007), provided by Ewan O'Connor

- >2 years of cloud macro- and microphysical properties for Ny-Ålesund
- operational retrieval, measurements ongoing

Sensor synergy: liquid and ice water content

Monthly mean cloud characteristics at Ny-Ålesund

[©] Kerstin Ebell, all rights reserved.

Sensor synergy + radiative transfer

6

Surface cloud radiative effect (CRE) at Ny-Ålesund

$$CRE=(F\downarrow -F\uparrow)_{all-sky}-(F\downarrow -F\uparrow)_{clear}$$

positive \rightarrow clouds warm the surface negative \rightarrow clouds cool the surface

annual average net surface cloud radiative effect at Ny-Ålesund for 2017: +11 Wm⁻² Ebell, K., T. Nomokonova, M. Maturilli, and C. Ritter, 2020: Radiative Effect of Clouds at Ny-Ålesund, Svalbard, as Inferred from Ground-Based Remote Sensing Observations. *J. Appl. Meteor. Climatol.*, **59**, 3–22, <u>https://doi.org/10.1175/JAMC-D-19-0080.1</u>

What is the relative contribution of liquid and ice to CRE?

- discrimination of cases with
 - LWP > 5 gm⁻²
 - IWP > 0 gm⁻², LWP < 5 gm⁻²

 \rightarrow "liquid" clouds

 \rightarrow "ice" clouds

Ebell, K., T. Nomokonova, M. Maturilli, and C. Ritter, 2020: Radiative Effect of Clouds at Ny-Ålesund, Svalbard, as Inferred from Ground-Based Remote Sensing Observations. J. Appl. Meteor. Climatol., **59**, 3–22, <u>https://doi.org/10.1175/JAMC-D-19-0080.1</u>

What is the relative contribution of liquid and ice to CRE?

Ebell, K., T. Nomokonova, M. Maturilli, and C. Ritter, 2020: Radiative Effect of Clouds at Ny-Ålesund, Svalbard, as Inferred from Ground-Based Remote Sensing Observations. *J. Appl. Meteor. Climatol.*, **59**, 3–22, <u>https://doi.org/10.1175/JAMC-D-19-0080.1</u>

Impact of clouds on atmospheric heating rates (HR)

Cloud Radiative Forcing: CRF=HR_{all sky} – HR_{clear}

- SW: warming above 1 km and cooling below associated to height of maximum frequency of occurrence (FOC) of liquid and LWC at ~1 km
- LW: distinct LW cooling at top of liquid layers and warming below; pronounced signal for height with maximum FOC of liquid → follows seasonal cycle of liquid
- NET: dominated by LW CRF resulting in net warming of about 0.5 K day⁻¹ below 1.5 km and in general a net cooling above with cooling rates down to -6 K day⁻¹;

upper regions with heating associated to occurrence of higher ice/liquid clouds

Next steps

- Closer look on heating rate profiles
- Differentiation between cloud types (single-/multi-layer, liquid, ice, mixed-phase)
- Do we have characteristic heating rates for certain cloud types?
 → Comparison to observed heating rates at other Arctic sites
- Continuation of cloud observations and the analysis of radiative impact at Ny-Ålesund
 - ightarrow year-to-year variability

