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Volga River Basin: Area Overview and Project Motivation  
Opportunities and limitations within a speleothem-based approach

✤ Largest watershed in Europe; 
discharge to the Caspian Sea

✤ Major source of agricultural 
production; large exports

✤ Highly susceptible to drought 
(3 out of 5 years)

✤ No ‘time-continuous data’ on 
Holocene Volga discharge 
(Ward et al., 2007)
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View south from Kinderlinskaya Cave



Volga River Basin: Area Overview and Project Motivation  
Opportunities and limitations within a speleothem-based approach

✤ Karst terrain is common in the SE 
sector and along the Ural range, 
which delineates eastern border

✤ Well monitored cave sites, sample 
replication, high-precision age 
constraints

✤ Can we isolate hydroclimate 
signals from speleothem proxies?

✤ To what extent can cave records 
provide a proxy for basin-wide 
hydroclimate? 



Kinderlinskaya Cave 
• Longest cave in the region (>9 km), well decorated dead-end room 
• Stable microclimate, monitored over a 6-year interval



Continental Climate Dominated by Winter Trends0 1 2 3 4 5 6 7 8 9 10 11 12
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Working hypotheses and research goal 
• Winter (Oct-Mar) climate inferred from speleothem δ18O, positive correlation with T/P 
• Warm-season climate and aquifer dynamics can be inferred from δ13C and Mg/Ca, 

respectively; Sr/Ca compared to test for PCP control 
• Inferred trends should be replicable between samples/caves, not site-specific noise

GE3 – Geologov-3 Cave 
KC – Kinderlinskaya Cave 

KT-4 – Kutuk-4 Cave 
VC – Victoria Cave



Cave Climates, Seasonal Infiltration Bias 
Regional context for record interpretation 

• Winter (Oct-Mar) precipitation contributes the vast majority of infiltration at 
all cave sites, due to high potential evapotranspiration from Apr–Sep 

• Cave-water δ18O values are within ~0.5‰ of recharge-weighted precipitation 
• Trend toward higher summer T and lower summer P from north to south

1 2 3 4 5 6 7 8 9 10 11 12
Month

-20

-18

-16

-14

-12

-10

-8

-6

18
O

P

-20

-15

-10

-5

0

5

10

15

20

25

Tem
perature (°C)

0

10

20

30

40

50

60

70

80

90

100

Precipitation / P - PET (m
m

)

1 2 3 4 5 6 7 8 9 10 11 12
Month

-20

-18

-16

-14

-12

-10

-8

-6

18
O

P

-20

-15

-10

-5

0

5

10

15

20

25

Tem
perature (°C)

0

10

20

30

40

50

60

70

80

90

100

Precipitation / P - PET (m
m

)
1 2 3 4 5 6 7 8 9 10 11 12

Month

-20

-18

-16

-14

-12

-10

-8

-6

18
O

P

-20

-15

-10

-5

0

5

10

15

20

25

Tem
perature (°C)

0

10

20

30

40

50

60

70

80

90

100

Precipitation / P - PET (m
m

)

Geologov-3 Cave
(58.75 N)

Kinderlinskaya Cave
(54.20 N)

Victoria / Kutuk-4 Caves
(53.05 N)



Watershed Precipitation, Signal Heterogeneity 
Regional context for record interpretation 

GE3

KC

Kutuk-4VC

GE3

KC

Kutuk-4VC

✤ Cave transect spans areas of highest to lowest precipitation in both winter and summer

✤ Crosses the modern Köppen-Geiger boundaries (Dfc-Dfb-Dfa), based on JJA T



Atmospheric Controls on Winter δ18OP and SAT 
Regional context for record interpretation 

✤ Winter T and δ18OP (anti)correlated with 
Arctic Oscillation (Scandinavian pattern)

✤ Lack of correlation during summer is 
inconsequential, due to seasonal bias in 
δ18O signal

✤ Stronger continental westerlies: milder 
winter T, higher P, higher δ18O
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* p < 0.01 for r > 0.42; p < 0.05 for r > 0.32
*Historical δ18OP data (1979–2016) from IsoGSM2 database (Yoshimura et al., 2008); 
monthly correlations are corroborated by nearby GNIP data (Baker et al., 2017; see SI)



Atmospheric Controls on Winter δ18OP and SAT 
Station data: Biser, Russia (near Geologov-3 Cave) 



Midlatitude blocking influence on Ural speleothem δ18O 
Opposite phasing from Scandinavian and Ural blocking
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Correlation of January Precipitation with T 
Station data: Biser, Russia (near Geologov-3 Cave) 



The Winter Hydroclimate Story from Ural Caves
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✤ Long-term increase in 
speleothem δ18O

✤ Replicated well across 
the Ural transect

✤ Holocene increase in 
winter T, P

✤ Consistent with model 
outputs, suggesting EH 
winter aridity
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Watershed JJA Climate, Signal Heterogeneity 
Regional context for record interpretation 

✤ How reflective of basin-wide precipitation patterns can each site be?
✤ Single-point correlation of 20th-century station JJA P vs. gridded JJA P:



Correlation of July Precipitation with T 
Station data: Biser, Russia (near Geologov-3 Cave) 



Southern Ural δ13C Results & Interpretation 
Kinderlinskaya and Victoria caves 
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Central Ural δ13C Results & Interpretation 
Geologov-3 Cave 
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Central Ural δ13C Results & Interpretation 
Geologov-3 Cave – Stalagmite GE3-2 discordance? 
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S. and C. Ural δ13C Results & Interpretation 
All cave sites 
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Dynamic controls on δ13C and regional hydroclimate 
Coherent portrait from instrumental, modeled, and ocean-core data 

Figure Upper: Historical precipitation (JJA) at Ufa station vs. mean 
geopotential height (500 mb), based on NCAR/NCEP reanalysis (1948–
2016). Dashed lines show inferred wave structure. 

Figure Left: KC δ13C vs. (top) SST gradient along the Norwegian–West 
Spitsbergen Current, and (bottom) Barents Sea SST (Hald et al., 2007)



Trace Element Results & Interpretation 
Geologov-3 and Kinderlinskaya caves 
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✤ General decrease in Sr/Ca 
over the Holocene, opposite 
the trend in Mg/Ca

✤ Mg/Ca broadly replicates 
between S. and C. Ural sites 
and is paced by JJA insolation

✤ PCP is not the primary control 
on Mg and Sr abundance—
what causes the decoupling?

✤ Sr and Mg are coupled in GE3 
stals during ‘9.3 ka’ cooling



Trace Element Results & Interpretation 
Geologov-3 and Kinderlinskaya caves 
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Holocene Hydroclimate of the Volga Basin 
Data summary and conclusions 
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✤ Initial decrease in δ13C 
from near bedrock 
values to Holocene 
mean: afforestation

✤ Stable δ13C; centennial 
perturbations during 
known cold events

✤ Mg/Ca follows JJA 
insolation; EH 
summer P was likely 
higher than modern, 
& offset winter aridity

✤ Consistent with, but 
no specific correlation 
to Holocene Caspian 
SL (Rychagov, 1997)



Conclusions
✤ Speleothem δ18O is strongly coherent across the 640-km transect from the Central to Southern 

Ural Mountains, suggesting a common winter climate signal: Holocene warming, increased 
precipitation, associated with stronger westerlies

✤ Speleothem δ13C is broadly coherent, especially between KC and GE3 caves, and shows 
relatively stable soil-vegetation dynamics since ~10 ka; millennial-scale trends paced by Barents 
Sea SST, likely due to influence on atmospheric ridge structure

✤ Speleothem Mg/Ca, not driven by PCP, likely reflects long-term water balance and is paced by 
JJA insolation; suggests Holocene optimum near ~8 ka and subsequent reduction in water 
balance

✤ Cave data generally support reconstructions of Caspian Sea level and Volga vegetation (pollen-
based), and to some extent time-slice studies of river regime and soil moisture

✤ Composite speleothem records provide a first-order estimate on Volga Basin hydroclimate 
across the Holocene, can be utilized in modeling studies and model-data comparisons


