Holocene hydroclimate of the Volga Basin recorded in speleothems from the Central and Southern Ural Mountains, Russia

Jonathan L. Baker*¹, Yuri Dublyansky², Olga Kadebskaya³, Denis Scholz⁴, Gabriella Koltai², Hanying Li¹, Jingyao Zhao¹, Christoph Spötl², Hai Cheng¹

- 1 Institute for Global Environmental Change, Xi'an Jiaotong University, Xi'an, China, *bakerj@xjtu.edu.cn
- 2 Institute of Geology, Innsbruck University, Innsbruck, Austria
- 3 Mining Institute, Ural Branch of the Russian Academy of Sciences, Perm, Russia
- 4 Institute for Geosciences, Johannes-Gutenberg-Universität, Mainz, Germany

Volga River Basin: Area Overview and Project Motivation *Opportunities and limitations within a speleothem-based approach*

- Largest watershed in Europe; discharge to the Caspian Sea
- Major source of agricultural production; large exports
- Highly susceptible to drought (3 out of 5 years)
- No 'time-continuous data' on Holocene Volga discharge (Ward et al., 2007)

Volga River Basin: Area Overview and Project Motivation *Opportunities and limitations within a speleothem-based approach*

 Karst terrain is common in the SE sector and along the Ural range, which delineates eastern border

Tash-Astiy, Bashkortostan, Russia

View south from Kinderlinskaya Cave

Volga River Basin: Area Overview and Project Motivation *Opportunities and limitations within a speleothem-based approach*

- Karst terrain is common in the SE sector and along the Ural range, which delineates eastern border
- Well monitored cave sites, sample replication, high-precision age constraints
- Can we isolate hydroclimate signals from speleothem proxies?
- To what extent can cave records provide a proxy for basin-wide hydroclimate?

Kinderlinskaya Cave

- Longest cave in the region (>9 km), well decorated dead-end room
- Stable microclimate, monitored over a 6-year interval

Continental Climate Dominated by Winter Trends

Working hypotheses and research goal

- Winter (Oct-Mar) climate inferred from speleothem $\delta^{18}\text{O},$ positive correlation with T/P
- Warm-season climate and aquifer dynamics can be inferred from δ^{13} C and Mg/Ca, respectively; Sr/Ca compared to test for PCP control
- Inferred trends should be replicable between samples/caves, not site-specific noise

GE3 – Geologov-3 Cave KC – Kinderlinskaya Cave KT-4 – Kutuk-4 Cave VC – Victoria Cave

Cave Climates, Seasonal Infiltration Bias Regional context for record interpretation

- Winter (Oct-Mar) precipitation contributes the vast majority of infiltration at all cave sites, due to high potential evapotranspiration from Apr–Sep
- Cave-water δ^{18} O values are within ~0.5‰ of recharge-weighted precipitation
- Trend toward higher summer T and lower summer P from north to south

Watershed Precipitation, Signal Heterogeneity Regional context for record interpretation

Cave transect spans areas of highest to lowest precipitation in both winter and summer
Crosses the modern Köppen-Geiger boundaries (Dfc-Dfb-Dfa), based on JJA T

Atmospheric Controls on Winter δ¹⁸O_P and SAT Regional context for record interpretation

- Winter T and δ¹⁸O_P (anti)correlated with Arctic Oscillation (Scandinavian pattern)
- Lack of correlation during summer is inconsequential, due to seasonal bias in δ¹⁸O signal
- Stronger continental westerlies: milder winter T, higher P, higher δ¹⁸O

*Historical $\delta^{18}O_P$ data (1979–2016) from **IsoGSM2** database (Yoshimura et al., 2008); monthly correlations are corroborated by nearby GNIP data (Baker et al., 2017; see SI)

Atmospheric Controls on Winter δ¹⁸O_P and SAT Station data: Biser, Russia (near Geologov-3 Cave)

Midlatitude blocking influence on Ural speleothem δ¹⁸O

Opposite phasing from Scandinavian and Ural blocking

Correlation of January Precipitation with T *Station data: Biser, Russia (near Geologov-3 Cave)*

The Winter Hydroclimate Story from Ural Caves

- Long-term increase in speleothem δ¹⁸O
- Replicated well across the Ural transect
- Holocene increase in winter T, P
- Consistent with model outputs, suggesting EH winter aridity

Watershed JJA Climate, Signal Heterogeneity Regional context for record interpretation

- How reflective of basin-wide precipitation patterns can each site be?
- Single-point correlation of 20th-century station JJA P vs. gridded JJA P:

Correlation of July Precipitation with T *Station data: Biser, Russia (near Geologov-3 Cave)*

Southern Ural 8¹³C Results & Interpretation *Kinderlinskaya and Victoria caves*

Central Ural 8¹³C Results & Interpretation Geologov-3 Cave

Central Ural 8¹³C Results & Interpretation *Geologov-3 Cave – Stalagmite GE3-2 discordance?*

S. and C. Ural 8¹³C Results & Interpretation *All cave sites*

Dynamic controls on 8¹³**C and regional hydroclimate** *Coherent portrait from instrumental, modeled, and ocean-core data*

Figure Upper: Historical precipitation (JJA) at Ufa station vs. mean geopotential height (500 mb), based on NCAR/NCEP reanalysis (1948 2016). Dashed lines show inferred wave structure.

Figure Left: KC δ^{13} C vs. (top) SST gradient along the Norwegian West Spitsbergen Current, and (bottom) Barents Sea SST (Hald et al., 2007)

Trace Element Results & Interpretation *Geologov-3 and Kinderlinskaya caves*

- General decrease in Sr/Ca over the Holocene, opposite the trend in Mg/Ca
- Mg/Ca broadly replicates
 between S. and C. Ural sites
 and is paced by JJA insolation
- PCP is not the primary control on Mg and Sr abundance what causes the decoupling?
- Sr and Mg are coupled in GE3 stals during '9.3 ka' cooling

Trace Element Results & Interpretation *Geologov-3 and Kinderlinskaya caves*

Holocene Hydroclimate of the Volga Basin Data summary and conclusions

- Initial decrease in δ¹³C from near bedrock values to Holocene mean: afforestation
- Stable δ¹³C; centennial perturbations during known cold events
- Mg/Ca follows JJA insolation; EH summer P was likely higher than modern, & offset winter aridity
- Consistent with, but no specific correlation to Holocene Caspian SL (Rychagov, 1997)

Conclusions

- Speleothem δ¹⁸O is strongly coherent across the 640-km transect from the Central to Southern Ural Mountains, suggesting a common winter climate signal: Holocene warming, increased precipitation, associated with stronger westerlies
- Speleothem δ¹³C is broadly coherent, especially between KC and GE3 caves, and shows relatively stable soil-vegetation dynamics since ~10 ka; millennial-scale trends paced by Barents Sea SST, likely due to influence on atmospheric ridge structure
- Speleothem Mg/Ca, not driven by PCP, likely reflects long-term water balance and is paced by JJA insolation; suggests Holocene optimum near ~8 ka and subsequent reduction in water balance
- Cave data generally support reconstructions of Caspian Sea level and Volga vegetation (pollenbased), and to some extent time-slice studies of river regime and soil moisture
- Composite speleothem records provide a first-order estimate on Volga Basin hydroclimate across the Holocene, can be utilized in modeling studies and model-data comparisons