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Fig. 7. .- Comparison of the CCP migration image of P-receiver function built
using only the closest stations to the profile (modified from Mancilla et al.
2015a) with the simulated structure of the Iberian lithosphere for the Reference
Model at 5.4 Myr. At the top, we display the topography along the profile.
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Fig. 5.- Topographic response of the free surface for the

Model predictions are consistent with a number of observations for the central Betics area
Reference Model.

where ongoing delamination has been proposed (e.g. Mancilla et al., 2013; 2015a; Heit et
al., 2017); these features are the first order characteristics of the lithospheric structure, the
offset between highest topography and thickest crust locations, and the observed
topographic pattern of uplift in western Sierra Nevada, and subsidence in the Granada
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