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Eoarchean tectono-metamorphic signatures recorded on the Isua Supracrustal Belt

1. Geological setting and tectonic models 2 Petrography

3. Garnet chemistry 4. Thermobarometry

The metamorphic record of the Isua supracrustal belt (ISB) is poorly 
understood some works rerport amphibolite facies conditions with no clear 
spatial variations (Boak & Dymek, 1982; Rollinson, 2002), while others 
argue for an increase in P-T conditions towards the southwest from 0.3 GPa 
and 380 ⁰C to 0.6 GPa and 560 ⁰C (Arai et al., 2015)  

Classic tectonic models explaning the origin and evolution of the ISB
invoke subduction-driven events. (A) After Nutman & Friend (2009) and (B) after Arai et. al. 
(2015)   

However, recent structural and fieldwork data argue for non-uniformitarian
models to explain the geological characteristics of Isua. (C) After Webb et al. (2020)

Retrograde chlorite commonly mimicks the foliation by replacing pograde biotite (A). 
The retrogression is more pervasive in NW part of the belt, where complete chloritization 
of some samples (B) and pseudomorphs of biotite (later replace by chlorite) after garnet 
appear. 
These onbservations suggest that the greenschist assemblages previously intepreted as 
prograde (c.f. Arai et al., 2015) could be an artefact of poor preservation.  

A) B)

The Isua garnets commonly show three (and up to four) distinc chemical zones, typically 
interpreted to represent three different tectono-metamorphic events (Rollinson 2002, 2003; 
Gauthiez-Putallaz et al., 2020). Our data (a) is consistent with the chemical zones, and when 
compare our data (b) with samples of other studies that share similar mineralogy and 
chemistry, it is clear that the garnets recorded the same changes in chemistry; however our 
micro-structural analysis reveals that the the core and annuli grew in the same deformation 
event. We propose then that the complex chemistry of the Isua garnets can be explain with 
only two metamorphic events in the Eo and Neoarchean (c) 
  

Both classic (A) and phase equilibria thermobarometry (B) show no clear increase in P-T conditions from 
NE-SW and neither from the 3.8 to the 3.7 Ga belts. Our thermobarometric data suggest that the ISB 
followed a near-isothermal prograde path (C) and reached peak metamorphic conditions at 550-600 oC and 
0.60-0.65 GPa for the Eoarchean event. Our results are consistent with the non-uniformatiarian tectonic 
model for the evolution of the ISB.
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Map taken from Zuo et al (in prep). 
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