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Tectonic setting in NW Iran

The Ahar earthquake doublet took place in
North-East Iranin the Azarbaijan region.

This region is located within the Alpine-
Himalayan orogenic belt of continental colli-
sion.

For a detailed description of the regional
tectonics consult B Faridi at al. (2017).

A seismotectonic introduction of the region
and seismological source studies of the Ahar
earthquake doublet can be found e.g.

in ® Donner et al. (2015)

Plot and title plot are
generated with the new
» Pyrocko geoviewer Sparrow.

Fault lines are from the
» GEM data base.
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https://link.springer.com/content/pdf/10.1134/S0016852117040033.pdf
https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/105/2A/791/332369
https://pyrocko.org/news/2020-01-16.html
https://blogs.openquake.org/hazard/global-active-fault-viewer/

Source location analyses results

(On August in 2012 a Mw6.4 earthquake

hit the region near the town Ahar in NW
Iran. With only 11 minutes delay it was
followed by another large and close by Mw6.3
earthquake. The 2012 Ahar earthquakes have
been unexpected in their large magnitudes
and the activated faults are poorly studied.
A mapped east-west striking surface rupture
is attributed to the first earthquake, which
shows a strike-slip mechanism. The second
earthquake is reported to have a thrust
mechanism and a deeper hypocenter, but is
much more poorly constrained than the first
earthquake.

References of the shown locations:
“Copley_1": ® Copley et al. (2014)
also the mapped fault trace (black)

“Donner_1(2)":
®» Donner et al. (2015)
“Amini_1": ®» Amini et al. (2018)

"1SC-1(2)": ® ISC Catalog “"GFZ_1(2)": » Geofon Catalog
“USGS_1": ®» USGS Catalog

“gCMT_1": » gCMT Catalog @
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https://academic.oup.com/gji/article/196/1/15/589196
https://pubs.geoscienceworld.org/ssa/bssa/article-abstract/105/2A/791/332369
https://link.springer.com/article/10.1007/s10950-018-9734-0
https://geofon.gfz-potsdam.de/eqinfo/list.php?atemin=2012-08-11&datemax=2012-08-11&latmax=&lonmin=&lonmax=&latmin=&magmin=6.3&fmt=html&nmax=
http://www.isc.ac.uk/iscbulletin/search/catalogue/
https://earthquake.usgs.gov/earthquakes/eventpage/usp000jq5p/executive
https://www.globalcmt.org/CMTsearch.html

Seismological data

The short time interval between those two earthquakes made it impossible to distinguish
their effects in the available static surface displacement data based on InSAR and GNSS
(next slide), and difficult in global seismological records.

Any source analysis using static displacement data and/or teleseismic waveforms thergfore has
to rely on the corresponding cumulative surface displacements angs récorded waveforms of the
first earthquake, respectively.
In contrast, in regional waveform data, the seismic phase arrivals of| both earthquakes are AV
well separated in time.
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Geodetic Data

To tackle the coupling of the earthquakes we conducted a combined-data study that solves
for the individual sources of the earthquake doublet simultaneously in a non-linear probabilis-

tic finite-fault optimisation.

We use InSAR data from RADARSAT-2 acquisitions and published co-seismic displacement

vectors based on GNSS data.

ascending orbit are available.

For the InSAR data, unfortunately, only measurements of an

UTM Northing (zone 38) [km]

GNSS displacements shown and used
are published by ® Yadaf et al. (2016)
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https://www.sciencedirect.com/science/article/abs/pii/S1367912015301206

Forward modelling with Pyrocko-GF

For the modelling we use Green's functions of a layered regional velocity model and two
rectangular, constant-slip rupture models. The foward modelling methods are described in
» Heimann et al. (2019).

Find out more about the modelling tools visiting the ™ Pyrocko-GF documentation.

time, x and y of nucleation,
(rise time and rupture speed)

e €

nner & Ghods Earth, May 7, EGU 2020


https://www.solid-earth.net/10/1921/2019/
https://pyrocko.org/docs/current/topics/pyrocko-gf.html

.
INSAR data post-processing

Post-processing of InSAR displacement maps was accomplished using the pyrocko tool kite, with the tasks:
of masking unwrapping errors

potential empirical correction of atmospheric noise

irregular data subsampling using a quadtree algorithm

estimation of turbulent atmospheric noise statistics and setup of the error variance-covariance matrix
formatting of the data for the modelling with the pyrocko optimization tool Grond

Find out more about kite visit the ® kite documentation and watch ® this EGU2020 presentation

File Tools About

Parameters @ | Scene | Scef/ duadtree | Scene.covariance | Scene.APS
display displacement
min value 0161232
max value 0124717
mean value 0.017503

» frame

) meta
demean v
applied

Scene.quadtree
display QuadNode.mean
epsilon —_ 0.006 [2
nan_allowed 090 |2
tile_size_min s0m |2
tile_size_max P 1138 [2 9
setCorrection Median (jonsson, 2002)
nleaves
reduction_rms 0.004030
nnodes 5004

sampling_method  spatial random
spatial_pairs 20405

spatial_bins 75

model_function exponential
variance 2.788615¢-06
covariance_model  2.8525¢.06, 987.057

covariance_model_rms 2.2356356-07



https://pyrocko.org/kite/docs/current/
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-8164.html

Bayesian Source optimization - Grond

9 - - T : T M
GROND is a direct-search optimization algorithm. The optimization strategy
resembles Simulated Annealing algorithms.

Grond does not only optimize though. By internal Bayesian bootstrapping of
data weights it keeps record of a chosen number of slightly perturbed and in-
dependent optimizations, from which one can form Bayesian model ensembles.

To explain Grond is beyond the frame of the presentation, please consult the
| documentation for details and code here ® Grond. )
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https://pyrocko.org/grond/docs/current/index.html

Results: Sources
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PDF

Our results show that the two earthquakes activated two different faults.

The first earth-

quake ruptured a shallow east-west striking dextral fault extending from the surface vertically

km depth (6 to 14 km confidence).

The second earthquake rup-

tured a north to north dast striking fault with a dip of about 40 degree with an oblique

below the first one, at

rupture mechanism. The| fault activated by the second earthquake seems to be located
evels deeper than 9 km and a bit shifted to the west.
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Results: Data fit

full waveform
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A selection of ensemble fits at stations with epicentral distances smaller than 1000km (out
of about 30 stations).

The dark grey lines are the observed waveforms. Red traces are synthetics from models
with an overall good data fit, blue traces are from models with slightly less good overall
fits. The trace misfit is shown below the waveforms.
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Results: Data fi $« selection of ensemble fits at stations with epicentral distances larger than 1000km (out
o

about 30 stations).
See plot description on the previous slide.
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Results: Data fits

The fit to the pattern of the InSAR displacement is good. The signal is slightly under-
estimated. Only the first shock contributes significantly to the surface displacement. The
second earthquake is too deep for a strong contribution in this regard.
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Results: Data fits

For the GNSS displacements we also find a
good overall fit (red) to the signal (black)
with a slight underestimation of the total
displacements. The source surface projections
are shown with dark boxes.
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Multi-array Backprojection

a model-independent waveform analysis

Calculating a multi-array backprojection for the first Ahar earthquake using teleseismic
waveforms at frequencies above the corner frequency of 0.24Hz, we find two pulses of high-
energy wave radiation (high coherence) as shown in the left figure. The time evolution on
the right shows these pulses to be start and stop phases of an unilateral rupture from east
towards west.

The locations well corresponds to the mapped surface trace and the fault model locations of

the first earthquake.
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Multi-array Backprojection

a model-independent waveform analysis

38.22°N|-

38.02°N|-

For the second Ahar earthquake we get more than two energy pulses. They show a larger
spread in east-west and in north-south direction compared to the results of the first earth-
quake. All the pulses are located further west and north compared to the kinematic mod-
elling results (slide 9) of the second earthquake.

You may be interested in another application of this multi-array backprojection. In this case
check out the presentation of ™ Hicks et al. on the 2016 Romanche earthquake.
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https://meetingorganizer.copernicus.org/EGU2020/EGU2020-5312.html

Summary

-
We present a non-linear Bayesian fault slip optimization that simultaneously
searches for two best fitting sources of the Ahar earthquake doublet.

We combine an InSAR displacement map, GNSS displacement vectors and
regional as well as global seismic waveform recordings in one common model
framework.

We propagate data and partly model uncertainties to robustly estimate the
model parameter uncertainties.

All software implementations are open-source and publicly available (some
under development).

Check out these other applications of our software tools to earthquake source
analyses at EGU2020:

®» On the 2017 November 12 Mw 7.3 Sarpol-Zahab earthquake sequence by
Jamalreyhani et al.

®» On the 2016 Romanche earthquake by Hicks et al.

\» On the 2019 Ridgecrest earthquakes by Isken et al.
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https://meetingorganizer.copernicus.org/EGU2020/EGU2020-759.html
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-759.html
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-5312.html
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-8164.html
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