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Variability of the land carbon sink

The obstacle in predicting

atmospheric CO2 growth

• Despite efforts to reduce carbon emissions, anthro-

pogenic fossil fuel emissions are increasing [1]

• In accordance with this increase, ocean and land carbon

sinks are removing approximately half of the emissions

every year [2]

• The ocean sink shows relatively small interannual vari-

ability and has a predictability of 2 to 5 years [3]

• The variability of the land sink can reach the order of

magnitude of the mean and shows little predictability

beyond one year [4]

• Being able to predict the terrestrial carbon flux anoma-

lies would allow to minimize the uncertainty in the

global carbon balance and facilitate near future emis-

sion trends

Variability of the land carbon sink

Fluxes are tightly coupled to climate variables as precipitation,

temperature and radiation [5], all of which having a low

inherent predictability [6]. The predictive performance of land

carbon fluxes is mostly due to two mechanisms:

• Predictable component due to low-frequency variability

emerging from climate modes

→ El Niño Southern Oscillation (ENSO) explains most of

the interannual variability [7]

Figure 1: The annual land

carbon sink and January SST

variability of the Niño 3.4

region in a 1000 year control

simulation with MPI ESM.

• Ecohydrological processes acting as low-pass filters between

land and atmosphere [8]

→ Processes hold memory of past climatic anomalies
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Objectives and experiment setup

In this study, we want to investigate. . .

(a) Patterns of low-frequency carbon flux variability induced by ENSO

• Identify hotspots of ENSO related carbon flux anomalies

• Quantify flux anomaly sizes by process and region

• Decompose the land-atmosphere fluxes in the most important

processes primary production (NPP) and soil respiration (Resp)

(b) Memory created by ecohydrological processes

• Decompose carbon fluxes and quantify spatial predictability patterns of

carbon flux processes by using perfect model approach

→ Allows insight in relative importance of different land and

vegetation processes

• Track how climatic anomalies percolate through land and vegetation

processes

• Identify mechanisms within this process that contribute to a delay of

the effects of climatic anomalies

Model environment

Model used: Fully coupled MPI

earth system model (mpiesm-1.2.01p6

”CMIP6p6”)

Simulation run: 1000 years pre-industrial

control run with coupled CO2

Ensemble experiment

Initializing ensemble simulations along

control run for perfect model experiment

Number of ensemble runs 35

Ensemble size 10

Run time 2 years

Month of initialization January
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ENSO related carbon flux patterns

Data used for analysis

• July to June of next year during El Niño peak of 6 events

• Fluxes of primary production (NPP) and soil respiration

Finding hotspots of carbon flux anomalies

1. Flux anomalies of all events are scaled to unit variance

2. Events averaged to create a composite El Niño event

3. Using spectral clustering algorithm DBCLUST to identify

separate areas of high flux anomalies

4. Cluster patterns applied to unscaled flux data

Figure 2: SST variability in the Niño 3.4 of 6 simulated El Niño events.

Simulation time used for data analysis in denoted by gray area.
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Clusters of post El Niño carbon flux anomalies

Figure 3: Clusters of carbon flux anomalies after El Niño. Numbers denote average size of the anomaly in Pg C and shading the intensity of the

relative flux anomaly within clusters.
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Predictability of carbon fluxes

Figure 4: Zonal

values of the

Anomaly Correlation

Coefficient (ACC)

derived from 35

ensemble

simulations starting

in January.

Decomposition of predictability

• The perfect model approach was used to

estimate the potential predictability of the two

major carbon flux processes

• Predictability was measured by using the

Anomaly Correlation Coefficient (ACC)

calculated from the 35 2 year simulations starting

in January

NPP ACC decreases slower with time and shows

high, continuous predictability in the tropics

for up to one year

Resp Predictability often below 0.5 for the 2nd

month. However, there is a seasonally

reemerging high predictability, even towards

the end of the second year

6



Mechanisms of predictability

Case study: Venezuela

• This region has a common pattern of predictability that

can be observed across the tropics and subtropics with

temporal shifts due to seasonality

• The ACC of NPP stays above 0.5 for 3 to 6 months and

has a second peak with 12 months delay

• Predictability of respiration is out of phase with the

predictability of NPP

• The ACC of respiration is generally higher and frequently

reaches values above 0.5 even for the second peak

Figure 5: ACC values of NPP and respiration in Venezuela.
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Land system processes contributing to predictability patterns in Venezuela

Anomalies of selected land and vegetation processes after Niña events

1. There is a strong positive increase of NPP at the beginning of La Niña

events which is slowly decreasing over two years. Respiration shows two

distinct peaks, separated by more or less average conditions.

2. Increased NPP and respiration can be explained by increased

precipitation in both wet seasons. Respiration halts in the dry season

(December to March), while NPP can still maintain the positive

anomaly due to excess sol moisture.

3. Increased NPP has resulted in an extensive foliage that can’t be

maintained during the dry season and leads to excess carbon available

for decomposition.

⇒ Memory is added to the system through:

• The successive dependence of respiration on NPP

• A delay in respiration caused by seasonality
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Conclusions

Patterns of low-frequency carbon flux variability

• Hotspots of NPP and respiration are overlapping in the

tropics and subtropics

• El Niño patterns differ across continents:

• While the decrease of South American NPP is

strongest in the central Amazon rainforest, the

center of NPP reduction is not in the tropical forest

of central African, but in drier regions

• The decrease of NPP is the strongest contributor to

land-atmosphere carbon flux anomalies after El Niño

Memory of ecohydrological processes

• Differing predictability patterns of NPP and respiration

• Memory is added to the system through:

• Long maintained NPP anomalies due to the

buffering ability of soils

• Reoccurring predictability of respiration because of

excess in carbon pools produced by NPP anomaly

and the halt of respiration during the dry season
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