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Introduction / Motivation

Inverse Processes, for instance, uncertainty 
quantification, have a major impact in many 
both scientific and economic fields of 
Geosciences. 
Here, we investigate the importance of global 
sensitivity analyses (SA) as a required pre-
step for inverse processes. 
To compensate for the computationally 
intensive nature of the SA, we employ the 
reduced basis method (RB) to construct 
highly accurate surrogate models (Fig. 1). 
The RB method (Hesthaven et al., 2016; 
Prud’homme et al., 2002) is a model order 
reduction technique that aims at constructing 
low order approximations of, for instance, finite 
element simulations. For an introduction to the 
method in a geoscientific context, we refer to 
Degen et al. (2020a).Figure 1: Illustrating the benefits of the RB method for geophysical inverse problems.



EGU General Assembly 2020 | How Well Do We Know Our Models? |  
Denise Degen (denise.degen@cgre.rwth-aachen.de) | 04.05.2020

3

Local vs. Global Sensitivity Analysis – Case Study Upper Rhine Graben

Figure 2: Comparison of local and global SA for the Upper 
Rhine Graben model

Aim: Determine the influence of the model parameters on 
the model response
Theory:
• Local SA:

• Local influence à with respect to pre-defined reference
• Vicinity of the input parameters
• No correlations considered

• Global SA:
• Sobol sensitivity analysis à variance-based
• Parameter distribution does not need to be know a priori
• Correlations considered

Take Away:
Local SA overestimates the influence of the model 
parameters and does not efficiently reduce the parameter 
space. Therefore, only the global SA is beneficial as a pre-
step for inverse processes. For more information, refer to 
Degen (2020b).

CRS = Cenozoic Rift Sediments
LM1,LM2 = Lithospheric Mantle
DLK = Dogger, Lias, Keuper
S = Saxothuringian
MCH = Mid-German Crystalline High
LC = Lower Crust
CM = Cenozoic Folded Molasse
CFM = Cenozoic Foreland Molasse
JM = Jura Mountains
O = Odenwald

For more information regarding the geological model we refer to Freymark et al. (2017).
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Influence of the Boundary Condition – Case Study Brandenburg
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Figure 3: Posterior standard deviation for the Brandenburg Model

Figure 4: Sensitivity of the thermal conductivity of the thin lower layer (Layer 2) with respect to the distance from the 
boundaries. The interfaces of this layer are denoted with L.
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Take Away:
Both the uncertainty quantification (Fig. 3) and 
the sensitivity analysis for the analytical solution 
(Fig. 4) show that we have a high influence of 
the upper boundary condition on our area of 
interest (target depth 5 km).

For more information regarding the geological model we 
refer to Noack et al. (2012;2013) and  for information 
about the uncertainty quantification we refer to Degen et 
al. (2020c).
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Influence Transient Effects – Case Study Central European Basin System (CEBS)

t = 22.8 ka - 75.8 Ma t = 75.8 Ma - 255.7 Mat = 0 ka - 22.8 ka

Take Away:
Fig. 5 shows that the sensitivities for 
the thermal parameters hugely differ 
between the steady-state and 
transient case. That is also the case 
for transient simulations that reach 
equilibrium.

Take Away:
Subdividing the analysis into different 
time frames allows to investigate the 
travel path of the thermal signal.

Figure 5: Global SA 
for the CEBS model. 
The first-order 
indices are denoted 
in blue
and the total-order 
indices in orange. 
Additionally, the 
total-order indices of 
the short-term 
(dashed gray line) 
and steady-state 
analyses (doted
gray line) are plotted.

For more information regarding the geological 
model we refer to Maystrenko et al. (2013), 
Scheck-Wenderoth and Maystrenko (2013), and 
Scheck-Wenderoth et al. (2014).
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Outlook and Conclusion
Outlook:
• Extension to coupled processes
• Coupling of Climate and Subsurface for the Boundary
• Incorporation of Optimal Experimental Design      

Collaboration with Karen Veroy (TU Eindhoven) and Nicole Nellesen
(RWTH Aachen)

Conclusion:
• Sensitivity Analysis is important to reduce the parameter 

space for inverse processes
• SA enhances the model understanding
• Local sensitivity analyses overestimate the influence
• Only global sensitivity analysis yield robust and reliable 

model calibrations (both deterministic and stochastic)
• Computational demanding nature of the global SA 

requires a surrogate model
• RB yields ideal surrogate models since we

• Obtain results everywhere in the model
• Obtain Speed-ups between 104 to 106
• Preserve the physical laws
• Have an objective evaluation of the approximation 

quality through the error bound
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